cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327357 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of sets covering n vertices with non-spanning edge-connectivity k.

This page as a plain text file.
%I A327357 #4 Sep 11 2019 20:22:21
%S A327357 1,0,1,1,1,4,1,3,1,30,13,33,32,6,546,421,1302,1915,1510,693,316,135,
%T A327357 45,10,1
%N A327357 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of sets covering n vertices with non-spanning edge-connectivity k.
%C A327357 An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
%C A327357 The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system.
%e A327357 Triangle begins:
%e A327357     1
%e A327357     0    1
%e A327357     1    1
%e A327357     4    1    3    1
%e A327357    30   13   33   32    6
%e A327357   546  421 1302 1915 1510  693  316  135   45   10    1
%e A327357 Row n = 3 counts the following antichains:
%e A327357   {{1},{2,3}}    {{1,2,3}}  {{1,2},{1,3}}  {{1,2},{1,3},{2,3}}
%e A327357   {{2},{1,3}}               {{1,2},{2,3}}
%e A327357   {{3},{1,2}}               {{1,3},{2,3}}
%e A327357   {{1},{2},{3}}
%t A327357 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t A327357 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
%t A327357 eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
%t A327357 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,5},{k,0,2^n}]//.{foe___,0}:>{foe}
%Y A327357 Row sums are A307249.
%Y A327357 Column k = 0 is A120338.
%Y A327357 The non-covering version is A327353.
%Y A327357 The version for spanning edge-connectivity is A327352.
%Y A327357 The specialization to simple graphs is A327149, with unlabeled version A327201.
%Y A327357 Cf. A014466, A293606, A326704, A326787, A327071, A327148, A327236, A327351.
%K A327357 nonn,tabf,more
%O A327357 0,6
%A A327357 _Gus Wiseman_, Sep 11 2019