This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327357 #4 Sep 11 2019 20:22:21 %S A327357 1,0,1,1,1,4,1,3,1,30,13,33,32,6,546,421,1302,1915,1510,693,316,135, %T A327357 45,10,1 %N A327357 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of antichains of sets covering n vertices with non-spanning edge-connectivity k. %C A327357 An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices. %C A327357 The non-spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (along with any non-covered vertices) to obtain a disconnected or empty set-system. %e A327357 Triangle begins: %e A327357 1 %e A327357 0 1 %e A327357 1 1 %e A327357 4 1 3 1 %e A327357 30 13 33 32 6 %e A327357 546 421 1302 1915 1510 693 316 135 45 10 1 %e A327357 Row n = 3 counts the following antichains: %e A327357 {{1},{2,3}} {{1,2,3}} {{1,2},{1,3}} {{1,2},{1,3},{2,3}} %e A327357 {{2},{1,3}} {{1,2},{2,3}} %e A327357 {{3},{1,2}} {{1,3},{2,3}} %e A327357 {{1},{2},{3}} %t A327357 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A327357 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; %t A327357 eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]]; %t A327357 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&eConn[#]==k&]],{n,0,5},{k,0,2^n}]//.{foe___,0}:>{foe} %Y A327357 Row sums are A307249. %Y A327357 Column k = 0 is A120338. %Y A327357 The non-covering version is A327353. %Y A327357 The version for spanning edge-connectivity is A327352. %Y A327357 The specialization to simple graphs is A327149, with unlabeled version A327201. %Y A327357 Cf. A014466, A293606, A326704, A326787, A327071, A327148, A327236, A327351. %K A327357 nonn,tabf,more %O A327357 0,6 %A A327357 _Gus Wiseman_, Sep 11 2019