cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327358 Triangle read by rows where T(n,k) is the number of unlabeled antichains of nonempty sets covering n vertices with vertex-connectivity >= k.

This page as a plain text file.
%I A327358 #7 Sep 10 2019 19:58:02
%S A327358 1,1,0,2,1,0,5,3,2,0,20,14,10,6,0,180,157,128,91,54,0
%N A327358 Triangle read by rows where T(n,k) is the number of unlabeled antichains of nonempty sets covering n vertices with vertex-connectivity >= k.
%C A327358 An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
%C A327358 The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.
%C A327358 If empty edges are allowed, we have T(0,0) = 2.
%e A327358 Triangle begins:
%e A327358     1
%e A327358     1   0
%e A327358     2   1   0
%e A327358     5   3   2   0
%e A327358    20  14  10   6   0
%e A327358   180 157 128  91  54   0
%e A327358 Non-isomorphic representatives of the antichains counted in row n = 4:
%e A327358   {1234}          {1234}           {1234}           {1234}
%e A327358   {1}{234}        {12}{134}        {123}{124}       {12}{134}{234}
%e A327358   {12}{34}        {123}{124}       {12}{13}{234}    {123}{124}{134}
%e A327358   {12}{134}       {12}{13}{14}     {12}{134}{234}   {12}{13}{14}{234}
%e A327358   {123}{124}      {12}{13}{24}     {123}{124}{134}  {123}{124}{134}{234}
%e A327358   {1}{2}{34}      {12}{13}{234}    {12}{13}{24}{34} {12}{13}{14}{23}{24}{34}
%e A327358   {2}{13}{14}     {12}{134}{234}   {12}{13}{14}{234}
%e A327358   {12}{13}{14}    {123}{124}{134}  {12}{13}{14}{23}{24}
%e A327358   {12}{13}{24}    {12}{13}{14}{23} {123}{124}{134}{234}
%e A327358   {1}{2}{3}{4}    {12}{13}{24}{34} {12}{13}{14}{23}{24}{34}
%e A327358   {12}{13}{234}   {12}{13}{14}{234}
%e A327358   {12}{134}{234}  {12}{13}{14}{23}{24}
%e A327358   {123}{124}{134} {123}{124}{134}{234}
%e A327358   {4}{12}{13}{23} {12}{13}{14}{23}{24}{34}
%e A327358   {12}{13}{14}{23}
%e A327358   {12}{13}{24}{34}
%e A327358   {12}{13}{14}{234}
%e A327358   {12}{13}{14}{23}{24}
%e A327358   {123}{124}{134}{234}
%e A327358   {12}{13}{14}{23}{24}{34}
%Y A327358 Column k = 0 is A261005, or A006602 if empty edges are allowed.
%Y A327358 Column k = 1 is A261006 (clutters), if we assume A261006(0) = A261006(1) = 0.
%Y A327358 Column k = 2 is A305028 (blobs), if we assume A305028(0) = A305028(2) = 0.
%Y A327358 Column k = n - 1 is A327425 (cointersecting).
%Y A327358 The labeled version is A327350.
%Y A327358 Negated first differences of rows are A327359.
%Y A327358 Cf. A006126, A055621, A120338, A293606, A293993, A327334, A327351, A327356.
%K A327358 nonn,tabl,more
%O A327358 0,4
%A A327358 _Gus Wiseman_, Sep 09 2019