This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327358 #7 Sep 10 2019 19:58:02 %S A327358 1,1,0,2,1,0,5,3,2,0,20,14,10,6,0,180,157,128,91,54,0 %N A327358 Triangle read by rows where T(n,k) is the number of unlabeled antichains of nonempty sets covering n vertices with vertex-connectivity >= k. %C A327358 An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices. %C A327358 The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0. %C A327358 If empty edges are allowed, we have T(0,0) = 2. %e A327358 Triangle begins: %e A327358 1 %e A327358 1 0 %e A327358 2 1 0 %e A327358 5 3 2 0 %e A327358 20 14 10 6 0 %e A327358 180 157 128 91 54 0 %e A327358 Non-isomorphic representatives of the antichains counted in row n = 4: %e A327358 {1234} {1234} {1234} {1234} %e A327358 {1}{234} {12}{134} {123}{124} {12}{134}{234} %e A327358 {12}{34} {123}{124} {12}{13}{234} {123}{124}{134} %e A327358 {12}{134} {12}{13}{14} {12}{134}{234} {12}{13}{14}{234} %e A327358 {123}{124} {12}{13}{24} {123}{124}{134} {123}{124}{134}{234} %e A327358 {1}{2}{34} {12}{13}{234} {12}{13}{24}{34} {12}{13}{14}{23}{24}{34} %e A327358 {2}{13}{14} {12}{134}{234} {12}{13}{14}{234} %e A327358 {12}{13}{14} {123}{124}{134} {12}{13}{14}{23}{24} %e A327358 {12}{13}{24} {12}{13}{14}{23} {123}{124}{134}{234} %e A327358 {1}{2}{3}{4} {12}{13}{24}{34} {12}{13}{14}{23}{24}{34} %e A327358 {12}{13}{234} {12}{13}{14}{234} %e A327358 {12}{134}{234} {12}{13}{14}{23}{24} %e A327358 {123}{124}{134} {123}{124}{134}{234} %e A327358 {4}{12}{13}{23} {12}{13}{14}{23}{24}{34} %e A327358 {12}{13}{14}{23} %e A327358 {12}{13}{24}{34} %e A327358 {12}{13}{14}{234} %e A327358 {12}{13}{14}{23}{24} %e A327358 {123}{124}{134}{234} %e A327358 {12}{13}{14}{23}{24}{34} %Y A327358 Column k = 0 is A261005, or A006602 if empty edges are allowed. %Y A327358 Column k = 1 is A261006 (clutters), if we assume A261006(0) = A261006(1) = 0. %Y A327358 Column k = 2 is A305028 (blobs), if we assume A305028(0) = A305028(2) = 0. %Y A327358 Column k = n - 1 is A327425 (cointersecting). %Y A327358 The labeled version is A327350. %Y A327358 Negated first differences of rows are A327359. %Y A327358 Cf. A006126, A055621, A120338, A293606, A293993, A327334, A327351, A327356. %K A327358 nonn,tabl,more %O A327358 0,4 %A A327358 _Gus Wiseman_, Sep 09 2019