This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327359 #6 Sep 10 2019 19:58:09 %S A327359 1,1,0,1,1,0,2,1,2,0,6,4,4,6,0,23,29,37,37,54,0 %N A327359 Triangle read by rows where T(n,k) is the number of unlabeled antichains of nonempty sets covering n vertices with vertex-connectivity exactly k. %C A327359 An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices. %C A327359 The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0. %C A327359 If empty edges are allowed, we have T(0,0) = 2. %e A327359 Triangle begins: %e A327359 1 %e A327359 1 0 %e A327359 1 1 0 %e A327359 2 1 2 0 %e A327359 6 4 4 6 0 %e A327359 23 29 37 37 54 0 %e A327359 Row n = 4 counts the following antichains: %e A327359 {1}{234} {14}{234} {134}{234} {1234} %e A327359 {12}{34} {13}{24}{34} {13}{14}{234} {12}{134}{234} %e A327359 {1}{2}{34} {14}{24}{34} {12}{13}{24}{34} {124}{134}{234} %e A327359 {1}{24}{34} {14}{23}{24}{34} {13}{14}{23}{24}{34} {12}{13}{14}{234} %e A327359 {1}{2}{3}{4} {123}{124}{134}{234} %e A327359 {1}{23}{24}{34} {12}{13}{14}{23}{24}{34} %Y A327359 Row sums are A261005, or A006602 if empty edges are allowed. %Y A327359 Column k = 0 is A327426. %Y A327359 Column k = 1 is A327436. %Y A327359 Column k = n - 1 is A327425. %Y A327359 The labeled version is A327351. %Y A327359 Cf. A003465, A006126, A014466, A048143, A293993, A323818, A326704, A327125, A327334, A327336, A327350, A327358. %K A327359 nonn,tabl,more %O A327359 0,7 %A A327359 _Gus Wiseman_, Sep 10 2019