This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327363 #4 Sep 26 2019 15:24:43 %S A327363 1,1,0,2,1,0,8,4,1,0,64,38,10,1,0,1024,728,238,26,1,0 %N A327363 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and vertex-connectivity >= k. %C A327363 The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton. %e A327363 Triangle begins: %e A327363 1 %e A327363 1 0 %e A327363 2 1 0 %e A327363 8 4 1 0 %e A327363 64 38 10 1 0 %e A327363 1024 728 238 26 1 0 %t A327363 vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]; %t A327363 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}] %Y A327363 Column k = 0 is A006125. %Y A327363 Column k = 1 is A001187. %Y A327363 Column k = 2 is A013922. %Y A327363 The unlabeled version is A327805. %Y A327363 Row-wise partial sums of A327334 (vertex-connectivity exactly k). %Y A327363 Cf. A259862, A327114, A327125, A327126, A327127, A327806. %K A327363 nonn,tabl,more %O A327363 0,4 %A A327363 _Gus Wiseman_, Sep 26 2019