This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327364 #8 Sep 11 2019 16:46:57 %S A327364 0,0,1,6,46,655,17991,927416,89009740,16020407709,5468601546685, %T A327364 3578414666656214,4529751815161579194,11175105490563109463875, %U A327364 54043272967471942825421219,514566625051705610110588073460,9677104749727084630538798805505880 %N A327364 Number of labeled simple graphs with n vertices, a connected edge-set, and at least one endpoint (vertex of degree 1). %H A327364 Andrew Howroyd, <a href="/A327364/b327364.txt">Table of n, a(n) for n = 0..50</a> %F A327364 Binomial transform of A327362. %e A327364 The a(4) = 46 edge-sets: %e A327364 {12} {12,13} {12,13,14} {12,13,14,23} %e A327364 {13} {12,14} {12,13,24} {12,13,14,24} %e A327364 {14} {12,23} {12,13,34} {12,13,14,34} %e A327364 {23} {12,24} {12,14,23} {12,13,23,24} %e A327364 {24} {13,14} {12,14,34} {12,13,23,34} %e A327364 {34} {13,23} {12,23,24} {12,14,23,24} %e A327364 {13,34} {12,23,34} {12,14,24,34} %e A327364 {14,24} {12,24,34} {12,23,24,34} %e A327364 {14,34} {13,14,23} {13,14,23,34} %e A327364 {23,24} {13,14,24} {13,14,24,34} %e A327364 {23,34} {13,23,24} {13,23,24,34} %e A327364 {24,34} {13,23,34} {14,23,24,34} %e A327364 {13,24,34} %e A327364 {14,23,24} %e A327364 {14,23,34} %e A327364 {14,24,34} %t A327364 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A327364 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]==1&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}] %o A327364 (PARI) seq(n)={my(x=x + O(x*x^n)); Vec(serlaplace(exp(x)*(-x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!)) - log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x))^k/k!)))), -(n+1))} \\ _Andrew Howroyd_, Sep 11 2019 %Y A327364 The covering case is A327362. %Y A327364 Graphs with endpoints are A245797. %Y A327364 Graphs with connected edge-set are A287689. %Y A327364 Connected graphs with bridges are A327071. %Y A327364 Covering graphs with endpoints are A327227. %Y A327364 Cf. A001187, A059167, A141580, A322395, A327148, A327335, A327369. %K A327364 nonn %O A327364 0,4 %A A327364 _Gus Wiseman_, Sep 04 2019 %E A327364 Terms a(7) and beyond from _Andrew Howroyd_, Sep 11 2019