cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327366 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and minimum vertex-degree k.

This page as a plain text file.
%I A327366 #14 Mar 09 2020 14:38:24
%S A327366 1,1,0,1,1,0,4,3,1,0,23,31,9,1,0,256,515,227,25,1,0,5319,15381,10210,
%T A327366 1782,75,1,0,209868,834491,815867,221130,15564,231,1,0,15912975,
%U A327366 83016613,116035801,47818683,5499165,151455,763,1,0,2343052576,15330074139,29550173053,18044889597,3291232419,158416629,1635703,2619,1,0
%N A327366 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and minimum vertex-degree k.
%C A327366 The minimum vertex-degree of the empty graph is infinity. It has been included here under k = 0. - _Andrew Howroyd_, Mar 09 2020
%H A327366 Andrew Howroyd, <a href="/A327366/b327366.txt">Table of n, a(n) for n = 0..230</a> (rows n = 0..20)
%H A327366 Gus Wiseman, <a href="/A327366/a327366.png">The graphs with 4 vertices and minimum vertex-degree k (row n = 4).</a>
%e A327366 Triangle begins:
%e A327366      1
%e A327366      1     0
%e A327366      1     1     0
%e A327366      4     3     1     0
%e A327366     23    31     9     1     0
%e A327366    256   515   227    25     1     0
%e A327366   5319 15381 10210  1782    75     1     0
%t A327366 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],k==If[#=={}||Union@@#!=Range[n],0,Min@@Length/@Split[Sort[Join@@#]]]&]],{n,0,5},{k,0,n}]
%o A327366 (PARI)
%o A327366 GraphsByMaxDegree(n)={
%o A327366   local(M=Map(Mat([x^0, 1])));
%o A327366   my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
%o A327366   my(merge(r, p, v)=acc(p + sum(i=1, poldegree(p)-r-1, polcoef(p, i)*(1-x^i)), v));
%o A327366   my(recurse(r, p, i, q, v, e)=if(i<0, merge(r, x^e+q, v), my(t=polcoef(p, i)); for(k=0, t, self()(r, p, i-1, (t-k+x*k)*x^i+q, binomial(t, k)*v, e+k))));
%o A327366   for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i, 1]); recurse(n-k, p, poldegree(p), 0, src[i, 2], 0)));
%o A327366   Mat(M);
%o A327366 }
%o A327366 Row(n)={if(n==0, [1], my(M=GraphsByMaxDegree(n), u=vector(n+1)); for(i=1, matsize(M)[1], u[n-poldegree(M[i,1])]+=M[i,2]); u)}
%o A327366 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 09 2020
%Y A327366 Row sums are A006125.
%Y A327366 Row sums without the first column are A006129.
%Y A327366 Row sums without the first two columns are A100743.
%Y A327366 Column k = 0 is A327367(n > 0).
%Y A327366 Column k = 1 is A327227.
%Y A327366 The unlabeled version is A294217.
%Y A327366 Cf. A059167, A245797, A327069, A327103, A327334, A327369.
%K A327366 nonn,tabl
%O A327366 0,7
%A A327366 _Gus Wiseman_, Sep 04 2019
%E A327366 Terms a(28) and beyond from _Andrew Howroyd_, Sep 09 2019