This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327366 #14 Mar 09 2020 14:38:24 %S A327366 1,1,0,1,1,0,4,3,1,0,23,31,9,1,0,256,515,227,25,1,0,5319,15381,10210, %T A327366 1782,75,1,0,209868,834491,815867,221130,15564,231,1,0,15912975, %U A327366 83016613,116035801,47818683,5499165,151455,763,1,0,2343052576,15330074139,29550173053,18044889597,3291232419,158416629,1635703,2619,1,0 %N A327366 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and minimum vertex-degree k. %C A327366 The minimum vertex-degree of the empty graph is infinity. It has been included here under k = 0. - _Andrew Howroyd_, Mar 09 2020 %H A327366 Andrew Howroyd, <a href="/A327366/b327366.txt">Table of n, a(n) for n = 0..230</a> (rows n = 0..20) %H A327366 Gus Wiseman, <a href="/A327366/a327366.png">The graphs with 4 vertices and minimum vertex-degree k (row n = 4).</a> %e A327366 Triangle begins: %e A327366 1 %e A327366 1 0 %e A327366 1 1 0 %e A327366 4 3 1 0 %e A327366 23 31 9 1 0 %e A327366 256 515 227 25 1 0 %e A327366 5319 15381 10210 1782 75 1 0 %t A327366 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],k==If[#=={}||Union@@#!=Range[n],0,Min@@Length/@Split[Sort[Join@@#]]]&]],{n,0,5},{k,0,n}] %o A327366 (PARI) %o A327366 GraphsByMaxDegree(n)={ %o A327366 local(M=Map(Mat([x^0, 1]))); %o A327366 my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v))); %o A327366 my(merge(r, p, v)=acc(p + sum(i=1, poldegree(p)-r-1, polcoef(p, i)*(1-x^i)), v)); %o A327366 my(recurse(r, p, i, q, v, e)=if(i<0, merge(r, x^e+q, v), my(t=polcoef(p, i)); for(k=0, t, self()(r, p, i-1, (t-k+x*k)*x^i+q, binomial(t, k)*v, e+k)))); %o A327366 for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i, 1]); recurse(n-k, p, poldegree(p), 0, src[i, 2], 0))); %o A327366 Mat(M); %o A327366 } %o A327366 Row(n)={if(n==0, [1], my(M=GraphsByMaxDegree(n), u=vector(n+1)); for(i=1, matsize(M)[1], u[n-poldegree(M[i,1])]+=M[i,2]); u)} %o A327366 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Mar 09 2020 %Y A327366 Row sums are A006125. %Y A327366 Row sums without the first column are A006129. %Y A327366 Row sums without the first two columns are A100743. %Y A327366 Column k = 0 is A327367(n > 0). %Y A327366 Column k = 1 is A327227. %Y A327366 The unlabeled version is A294217. %Y A327366 Cf. A059167, A245797, A327069, A327103, A327334, A327369. %K A327366 nonn,tabl %O A327366 0,7 %A A327366 _Gus Wiseman_, Sep 04 2019 %E A327366 Terms a(28) and beyond from _Andrew Howroyd_, Sep 09 2019