cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327367 Number of labeled simple graphs with n vertices, at least one of which is isolated.

This page as a plain text file.
%I A327367 #12 Sep 05 2019 02:30:18
%S A327367 0,1,1,4,23,256,5319,209868,15912975,2343052576,675360194287,
%T A327367 383292136232380,430038382710483623,956430459603341708896,
%U A327367 4224538833207707658410103,37106500399796746894085512140,648740170822904504303462104598943
%N A327367 Number of labeled simple graphs with n vertices, at least one of which is isolated.
%F A327367 a(n) = A006125(n) - A006129(n).
%p A327367 b:= proc(n) option remember; `if`(n=0, 1,
%p A327367       2^binomial(n, 2)-add(b(k)*binomial(n, k), k=0..n-1))
%p A327367     end:
%p A327367 a:= n-> 2^(n*(n-1)/2)-b(n):
%p A327367 seq(a(n), n=0..17);  # _Alois P. Heinz_, Sep 04 2019
%t A327367 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#!=Range[n]&]],{n,0,5}]
%o A327367 (PARI) b(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2)); \\ A006129
%o A327367 a(n) = 2^(n*(n-1)/2) - b(n); \\ _Michel Marcus_, Sep 05 2019
%Y A327367 The unlabeled version is A000088(n - 1).
%Y A327367 Labeled graphs with no isolated vertices are A006129.
%Y A327367 Covering graphs with at least one endpoint are A327227.
%Y A327367 Cf. A006125, A006129, A054592, A245797, A327103, A327105.
%K A327367 nonn
%O A327367 0,4
%A A327367 _Gus Wiseman_, Sep 04 2019