cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327369 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).

This page as a plain text file.
%I A327369 #19 Nov 26 2024 17:55:17
%S A327369 1,1,0,1,0,1,2,0,6,0,15,12,30,4,3,314,320,260,80,50,0,13757,10890,
%T A327369 5445,1860,735,66,15,1142968,640836,228564,64680,16800,2772,532,0,
%U A327369 178281041,68362504,17288852,3666600,702030,115416,17892,1016,105
%N A327369 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).
%H A327369 Andrew Howroyd, <a href="/A327369/b327369.txt">Table of n, a(n) for n = 0..1325</a>
%F A327369 Column-wise binomial transform of A327377.
%F A327369 E.g.f.: exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - _Andrew Howroyd_, Oct 05 2019
%e A327369 Triangle begins:
%e A327369       1
%e A327369       1     0
%e A327369       1     0     1
%e A327369       2     0     6     0
%e A327369      15    12    30     4     3
%e A327369     314   320   260    80    50     0
%e A327369   13757 10890  5445  1860   735    66    15
%t A327369 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Count[Length/@Split[Sort[Join@@#]],1]==k&]],{n,0,5},{k,0,n}]
%o A327369 (PARI)
%o A327369 Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167.
%o A327369   my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n));
%o A327369   my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n));
%o A327369   my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!)));
%o A327369   my(A=exp(x + U + subst(B-x, x, x*(1-y) + R)));
%o A327369   Vecrev(n!*polcoef(A, n), n + 1);
%o A327369 }
%o A327369 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Oct 05 2019
%Y A327369 Row sums are A006125.
%Y A327369 Row sums without the first column are A245797.
%Y A327369 Column k = 0 is A059167.
%Y A327369 Column k = 1 is A277072.
%Y A327369 Column k = 2 is A277073.
%Y A327369 Column k = 3 is A277074.
%Y A327369 Column k = n is A123023.
%Y A327369 Column k = n - 1 is A327370.
%Y A327369 The unlabeled version is A327371.
%Y A327369 The covering version is A327377.
%Y A327369 Cf. A004110, A055302, A055314, A059166, A059167, A100743, A327227, A327228, A327362, A327364.
%K A327369 nonn,tabl
%O A327369 0,7
%A A327369 _Gus Wiseman_, Sep 04 2019
%E A327369 Terms a(28) and beyond from _Andrew Howroyd_, Sep 09 2019