This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327375 #4 Sep 09 2019 12:05:21 %S A327375 0,0,0,72,4752 %N A327375 Number of set-systems with n vertices and vertex-connectivity 2. %C A327375 A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0. %t A327375 csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A327375 vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]; %t A327375 Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],vertConnSys[Range[n],#]==2&]],{n,0,3}] %Y A327375 BII-numbers for vertex-connectivity 2 are A327374. %Y A327375 BII-numbers for cut-connectivity 2 are A327082. %Y A327375 BII-numbers for spanning edge-connectivity 2 are A327108. %Y A327375 BII-numbers for non-spanning edge-connectivity 2 are A327097. %Y A327375 Labeled graphs with vertex-connectivity 2 are A327198. %Y A327375 The vertex-connectivity of the set-system with BII-number n is A327051(n). %Y A327375 The enumeration of labeled graphs by vertex-connectivity is A327334. %Y A327375 Cf. A013922, A259862, A322389, A322390, A323818, A327336. %K A327375 nonn,more %O A327375 0,4 %A A327375 _Gus Wiseman_, Sep 05 2019