cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A327374 BII-numbers of set-systems with vertex-connectivity 2.

Original entry on oeis.org

52, 53, 54, 55, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Examples

			The sequence of all set-systems with vertex-connectivity 2 together with their BII-numbers begins:
  52: {{1,2},{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  61: {{1},{1,2},{3},{1,3},{2,3}}
  62: {{2},{1,2},{3},{1,3},{2,3}}
  63: {{1},{2},{1,2},{3},{1,3},{2,3}}
  64: {{1,2,3}}
  65: {{1},{1,2,3}}
  66: {{2},{1,2,3}}
  67: {{1},{2},{1,2,3}}
  68: {{1,2},{1,2,3}}
  69: {{1},{1,2},{1,2,3}}
  70: {{2},{1,2},{1,2,3}}
  71: {{1},{2},{1,2},{1,2,3}}
  72: {{3},{1,2,3}}
  73: {{1},{3},{1,2,3}}
  74: {{2},{3},{1,2,3}}
  75: {{1},{2},{3},{1,2,3}}
		

Crossrefs

Positions of 2's in A327051.
Cut-connectivity 2 is A327082.
Spanning edge-connectivity 2 is A327108.
Non-spanning edge-connectivity 2 is A327097.
Vertex-connectivity 3 is A327376.
Labeled graphs with vertex-connectivity 2 are A327198.
Set-systems with vertex-connectivity 2 are A327375.
The enumeration of labeled graphs by vertex-connectivity is A327334.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Select[Range[0,200],vertConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]==2&]

A327376 BII-numbers of set-systems with vertex-connectivity 3.

Original entry on oeis.org

2868, 2869, 2870, 2871, 2876, 2877, 2878, 2879, 2880, 2881, 2882, 2883, 2884, 2885, 2886, 2887, 2888, 2889, 2890, 2891, 2892, 2893, 2894, 2895, 2896, 2897, 2898, 2899, 2900, 2901, 2902, 2903, 2904, 2905, 2906, 2907, 2908, 2909, 2910, 2911, 2912, 2913, 2914
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Examples

			The sequence of all set-systems with vertex-connectivity 3 together with their BII-numbers begins:
  2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
  2869: {{1},{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
  2870: {{2},{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
  2871: {{1},{2},{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
  2876: {{1,2},{3},{1,3},{2,3},{1,4},{2,4},{3,4}}
  2877: {{1},{1,2},{3},{1,3},{2,3},{1,4},{2,4},{3,4}}
  2878: {{2},{1,2},{3},{1,3},{2,3},{1,4},{2,4},{3,4}}
  2879: {{1},{2},{1,2},{3},{1,3},{2,3},{1,4},{2,4},{3,4}}
  2880: {{1,2,3},{1,4},{2,4},{3,4}}
  2881: {{1},{1,2,3},{1,4},{2,4},{3,4}}
  2882: {{2},{1,2,3},{1,4},{2,4},{3,4}}
  2883: {{1},{2},{1,2,3},{1,4},{2,4},{3,4}}
  2884: {{1,2},{1,2,3},{1,4},{2,4},{3,4}}
  2885: {{1},{1,2},{1,2,3},{1,4},{2,4},{3,4}}
  2886: {{2},{1,2},{1,2,3},{1,4},{2,4},{3,4}}
  2887: {{1},{2},{1,2},{1,2,3},{1,4},{2,4},{3,4}}
  2888: {{3},{1,2,3},{1,4},{2,4},{3,4}}
  2889: {{1},{3},{1,2,3},{1,4},{2,4},{3,4}}
  2890: {{2},{3},{1,2,3},{1,4},{2,4},{3,4}}
  2891: {{1},{2},{3},{1,2,3},{1,4},{2,4},{3,4}}
		

Crossrefs

Positions of 3's in A327051.
BII-numbers for vertex-connectivity 2 are A327374.
BII-numbers for spanning edge-connectivity >= 3 are A327110.
The enumeration of labeled graphs by vertex-connectivity is A327334.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Select[Range[0,3000],vertConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]==3&]
Showing 1-2 of 2 results.