cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327377 Triangle read by rows where T(n,k) is the number of labeled simple graphs covering n vertices with exactly k endpoints (vertices of degree 1).

This page as a plain text file.
%I A327377 #13 Nov 26 2024 17:54:34
%S A327377 1,0,0,0,0,1,1,0,3,0,10,12,12,4,3,253,260,160,60,35,0,12068,9150,4230,
%T A327377 1440,480,66,15,1052793,570906,195048,53200,12600,2310,427,0,
%U A327377 169505868,63523656,15600032,3197040,585620,95088,14056,1016,105
%N A327377 Triangle read by rows where T(n,k) is the number of labeled simple graphs covering n vertices with exactly k endpoints (vertices of degree 1).
%C A327377 A graph is covering if there are no isolated vertices.
%H A327377 Andrew Howroyd, <a href="/A327377/b327377.txt">Table of n, a(n) for n = 0..1325</a>
%F A327377 Column-wise inverse binomial transform of A327369.
%F A327377 E.g.f.: exp(-x)*exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - _Andrew Howroyd_, Oct 05 2019
%e A327377 Triangle begins:
%e A327377       1
%e A327377       0     0
%e A327377       0     0     1
%e A327377       1     0     3     0
%e A327377      10    12    12     4     3
%e A327377     253   260   160    60    35     0
%e A327377   12068  9150  4230  1440   480    66    15
%o A327377 (PARI)
%o A327377 Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167.
%o A327377   my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n));
%o A327377   my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n));
%o A327377   my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!)));
%o A327377   my(A=exp(-x + O(x*x^n))*exp(x + U + subst(B-x, x, x*(1-y) + R)));
%o A327377   Vecrev(n!*polcoef(A, n), n + 1);
%o A327377 }
%o A327377 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Oct 05 2019
%Y A327377 Row sums are A006129.
%Y A327377 Column k = 0 is A100743.
%Y A327377 Column k = n is A123023.
%Y A327377 Row sums without the first column are A327227.
%Y A327377 The non-covering version is A327369.
%Y A327377 The unlabeled version is A327372.
%Y A327377 Cf. A004110, A006125, A055302, A055314, A059167, A245797, A327362, A327364, A327370.
%K A327377 nonn,tabl
%O A327377 0,9
%A A327377 _Gus Wiseman_, Sep 05 2019
%E A327377 Terms a(28) and beyond from _Andrew Howroyd_, Oct 05 2019