This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327377 #13 Nov 26 2024 17:54:34 %S A327377 1,0,0,0,0,1,1,0,3,0,10,12,12,4,3,253,260,160,60,35,0,12068,9150,4230, %T A327377 1440,480,66,15,1052793,570906,195048,53200,12600,2310,427,0, %U A327377 169505868,63523656,15600032,3197040,585620,95088,14056,1016,105 %N A327377 Triangle read by rows where T(n,k) is the number of labeled simple graphs covering n vertices with exactly k endpoints (vertices of degree 1). %C A327377 A graph is covering if there are no isolated vertices. %H A327377 Andrew Howroyd, <a href="/A327377/b327377.txt">Table of n, a(n) for n = 0..1325</a> %F A327377 Column-wise inverse binomial transform of A327369. %F A327377 E.g.f.: exp(-x)*exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - _Andrew Howroyd_, Oct 05 2019 %e A327377 Triangle begins: %e A327377 1 %e A327377 0 0 %e A327377 0 0 1 %e A327377 1 0 3 0 %e A327377 10 12 12 4 3 %e A327377 253 260 160 60 35 0 %e A327377 12068 9150 4230 1440 480 66 15 %o A327377 (PARI) %o A327377 Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167. %o A327377 my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n)); %o A327377 my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n)); %o A327377 my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))); %o A327377 my(A=exp(-x + O(x*x^n))*exp(x + U + subst(B-x, x, x*(1-y) + R))); %o A327377 Vecrev(n!*polcoef(A, n), n + 1); %o A327377 } %o A327377 { for(n=0, 8, print(Row(n))) } \\ _Andrew Howroyd_, Oct 05 2019 %Y A327377 Row sums are A006129. %Y A327377 Column k = 0 is A100743. %Y A327377 Column k = n is A123023. %Y A327377 Row sums without the first column are A327227. %Y A327377 The non-covering version is A327369. %Y A327377 The unlabeled version is A327372. %Y A327377 Cf. A004110, A006125, A055302, A055314, A059167, A245797, A327362, A327364, A327370. %K A327377 nonn,tabl %O A327377 0,9 %A A327377 _Gus Wiseman_, Sep 05 2019 %E A327377 Terms a(28) and beyond from _Andrew Howroyd_, Oct 05 2019