cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327392 Irregular triangle read by rows giving the connected components of the prime indices of n.

This page as a plain text file.
%I A327392 #4 Oct 04 2019 23:29:51
%S A327392 1,2,1,1,3,1,2,4,1,1,1,2,1,3,5,1,1,2,6,1,4,2,3,1,1,1,1,7,1,2,8,1,1,3,
%T A327392 4,1,5,9,1,1,1,2,3,1,6,2,1,1,4,10,1,2,3,11,1,1,1,1,1,2,5,1,7,3,4,1,1,
%U A327392 2,12,1,8,6,1,1,1,3,13,1,4,14,1,1,5,2,3
%N A327392 Irregular triangle read by rows giving the connected components of the prime indices of n.
%C A327392 First differs from A112798 at a(13) = 1, A112798(13) = 2.
%C A327392 The terms of each row are pairwise coprime.
%C A327392 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A327392 A number n with prime factorization n = prime(m_1)^s_1 * ... * prime(m_k)^s_k is connected if the simple labeled graph with vertex set {m_1,...,m_k} and edges between any two vertices with a common divisor greater than 1 is connected. Connected numbers are listed in A305078.
%e A327392 Triangle begins:
%e A327392   {}
%e A327392   1
%e A327392   2
%e A327392   1 1
%e A327392   3
%e A327392   1 2
%e A327392   4
%e A327392   1 1 1
%e A327392   2
%e A327392   1 3
%e A327392   5
%e A327392   1 1 2
%e A327392   6
%e A327392   1 4
%e A327392   2 3
%e A327392   1 1 1 1
%e A327392   7
%e A327392   1 2
%e A327392   8
%e A327392   1 1 3
%e A327392   4
%e A327392   1 5
%e A327392   9
%e A327392   1 1 1 2
%e A327392   3
%e A327392   1 6
%e A327392   2
%e A327392   1 1 4
%t A327392 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A327392 zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
%t A327392 Table[zsm[primeMS[n]],{n,30}]
%Y A327392 Row lengths are A305079.
%Y A327392 Cf. A000005, A056239, A112798, A218970, A304716, A302242, A305078, A327076.
%K A327392 nonn,tabf
%O A327392 1,2
%A A327392 _Gus Wiseman_, Oct 03 2019