This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327392 #4 Oct 04 2019 23:29:51 %S A327392 1,2,1,1,3,1,2,4,1,1,1,2,1,3,5,1,1,2,6,1,4,2,3,1,1,1,1,7,1,2,8,1,1,3, %T A327392 4,1,5,9,1,1,1,2,3,1,6,2,1,1,4,10,1,2,3,11,1,1,1,1,1,2,5,1,7,3,4,1,1, %U A327392 2,12,1,8,6,1,1,1,3,13,1,4,14,1,1,5,2,3 %N A327392 Irregular triangle read by rows giving the connected components of the prime indices of n. %C A327392 First differs from A112798 at a(13) = 1, A112798(13) = 2. %C A327392 The terms of each row are pairwise coprime. %C A327392 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A327392 A number n with prime factorization n = prime(m_1)^s_1 * ... * prime(m_k)^s_k is connected if the simple labeled graph with vertex set {m_1,...,m_k} and edges between any two vertices with a common divisor greater than 1 is connected. Connected numbers are listed in A305078. %e A327392 Triangle begins: %e A327392 {} %e A327392 1 %e A327392 2 %e A327392 1 1 %e A327392 3 %e A327392 1 2 %e A327392 4 %e A327392 1 1 1 %e A327392 2 %e A327392 1 3 %e A327392 5 %e A327392 1 1 2 %e A327392 6 %e A327392 1 4 %e A327392 2 3 %e A327392 1 1 1 1 %e A327392 7 %e A327392 1 2 %e A327392 8 %e A327392 1 1 3 %e A327392 4 %e A327392 1 5 %e A327392 9 %e A327392 1 1 1 2 %e A327392 3 %e A327392 1 6 %e A327392 2 %e A327392 1 1 4 %t A327392 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A327392 zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; %t A327392 Table[zsm[primeMS[n]],{n,30}] %Y A327392 Row lengths are A305079. %Y A327392 Cf. A000005, A056239, A112798, A218970, A304716, A302242, A305078, A327076. %K A327392 nonn,tabf %O A327392 1,2 %A A327392 _Gus Wiseman_, Oct 03 2019