This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327396 #20 Oct 10 2019 22:20:00 %S A327396 0,0,1,0,0,1,0,1,1,1,0,0,1,1,1,0,1,3,5,2,1,0,0,3,10,8,2,1,0,1,7,33,40, %T A327396 18,3,1,0,0,11,83,157,104,28,3,1,0,1,19,237,650,615,246,46,4,1,0,0,31, %U A327396 640,2522,3318,1857,495,65,4,1,0,1,63,1817,9888,17594,13311,4911,944,97,5,1 %N A327396 Triangle read by rows: T(n,k) is the number of n-bead necklace structures with beads of exactly k colors and no adjacent beads having the same color. %C A327396 Permuting the colors does not change the necklace structure. %C A327396 Equivalently, the number of k-block partitions of an n-set up to rotations where no block contains cyclically adjacent elements of the n-set. %H A327396 Andrew Howroyd, <a href="/A327396/b327396.txt">Table of n, a(n) for n = 1..1275</a> %e A327396 Triangle begins: %e A327396 0; %e A327396 0, 1; %e A327396 0, 0, 1; %e A327396 0, 1, 1, 1; %e A327396 0, 0, 1, 1, 1; %e A327396 0, 1, 3, 5, 2, 1; %e A327396 0, 0, 3, 10, 8, 2, 1; %e A327396 0, 1, 7, 33, 40, 18, 3, 1; %e A327396 0, 0, 11, 83, 157, 104, 28, 3, 1; %e A327396 0, 1, 19, 237, 650, 615, 246, 46, 4, 1; %e A327396 0, 0, 31, 640, 2522, 3318, 1857, 495, 65, 4, 1; %e A327396 0, 1, 63, 1817, 9888, 17594, 13311, 4911, 944, 97, 5, 1; %e A327396 ... %o A327396 (PARI) %o A327396 R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace((y-1)*exp(-x + O(x*x^(n\m))) - y + exp(-x + sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d)) ), x, x^m))/x), -n)]))} %o A327396 { my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ _Andrew Howroyd_, Oct 09 2019 %Y A327396 Columns k=3..4 are A327397, A328130. %Y A327396 Partial row sums include A306888, A309673. %Y A327396 Row sums are A328150. %Y A327396 Cf. A152175, A261139, A208535. %K A327396 nonn,tabl %O A327396 1,18 %A A327396 _Andrew Howroyd_, Oct 04 2019