This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327403 #13 Jan 28 2025 16:55:02 %S A327403 0,1,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,2,2,2,1,2,1,2,1,2,1,2,1,1,1,2, %T A327403 1,2,1,2,2,2,1,3,1,2,1,2,1,2,1,2,1,2,1,2,1,2,2,2,1,2,1,2,2,1,2,2,1,2, %U A327403 1,2,1,2,1,2,1,2,1,3,1,2,1,2,1,3,1,2,2,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,2 %N A327403 Number of steps to reach a fixed point starting with n and repeatedly taking the quotient by the maximum stable divisor (A327393, A327402). %C A327403 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A number is stable if its distinct prime indices are pairwise indivisible. Stable numbers are listed in A316476. The maximum stable divisor of n is A327393(n). %H A327403 Antti Karttunen, <a href="/A327403/b327403.txt">Table of n, a(n) for n = 1..20000</a> %H A327403 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a> %H A327403 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>. %e A327403 We have 798 -> 42 -> 6 -> 2 -> 1, so a(798) = 4. %t A327403 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A327403 Table[Length[FixedPointList[#/Max[Select[Divisors[#],stableQ[PrimePi/@First/@FactorInteger[#],Divisible]&]]&,n]]-2,{n,100}] %o A327403 (PARI) A327403(n) = for(k=0,oo,my(nextn=A327402(n)); if(nextn==n,return(k)); n = nextn); \\ _Antti Karttunen_, Jan 28 2025 %Y A327403 See link for additional cross-references. %Y A327403 Positions of first appearance of each integer are A325782. %Y A327403 Cf. A000005, A303362, A323014, A327393, A327402. %K A327403 nonn %O A327403 1,6 %A A327403 _Gus Wiseman_, Sep 15 2019 %E A327403 Data section extended to a(105) by _Antti Karttunen_, Jan 28 2025