This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327410 #16 Feb 16 2025 08:33:58 %S A327410 1,6,10,20,21,36,56,78,90,105,120,171,210,252,300,364,465,528,560,741, %T A327410 756,792,903,990,1140,1176,1485,1540,1680,1830,1953,1980,2346,2520, %U A327410 2600,2628,2775,3240,3432,3570,4095,4368,4851,4960,5253,5460,5886,5984,6105 %N A327410 Numbers represented by the partition coefficients of prime partitions. %C A327410 Given a partition pi = (p1, p2, p3, ...) we call the associated multinomial coefficient (p1+p2+ ...)! / (p1!*p2!*p3! ...) the 'partition coefficient' of pi and denote it by <pi>. We say 'k is represented by pi' if k = <pi>. %C A327410 A partition is a prime partition if all parts are prime. %H A327410 George E. Andrews, Arnold Knopfmacher, and Burkhard Zimmermann, <a href="http://arxiv.org/abs/math/0509470">On the number of distinct multinomial coefficients</a>, arXiv:math/0509470 [math.CO], 2005. %H A327410 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimePartition.html">Prime Partition</a> %e A327410 (2*n)!/2^n (for n >= 1) is a subsequence because [2,2,...,2] (n times '2') is a prime partition. Similarly A327411(n) is a subsequence because [3,2,2,...,2] (n times '2') is a prime partition. (3*n)!/(6^n) and A327412 are subsequences for the same reason. %e A327410 The representations are not unique. 1 is the represented by all partitions of the form [p], p prime. For example 210 is represented by [3, 2, 2] and by [19, 2]. The list below shows the partitions with the smallest sum. %e A327410 1 <- [2], %e A327410 6 <- [2, 2], %e A327410 10 <- [3, 2], %e A327410 20 <- [3, 3], %e A327410 21 <- [5, 2], %e A327410 36 <- [7, 2], %e A327410 56 <- [5, 3], %e A327410 78 <- [11, 2], %e A327410 90 <- [2, 2, 2], %e A327410 105 <- [13, 2], %e A327410 120 <- [7, 3], %e A327410 171 <- [17, 2], %e A327410 210 <- [3, 2, 2], %e A327410 252 <- [5, 5], %e A327410 300 <- [23, 2]. %o A327410 (SageMath) %o A327410 def A327410_list(n): %o A327410 res = [] %o A327410 for k in range(2*n): %o A327410 P = Partitions(k, parts_in = prime_range(k+1)) %o A327410 res += [multinomial(p) for p in P] %o A327410 return sorted(Set(res))[:n] %o A327410 print(A327410_list(20)) %Y A327410 Cf. A000607, A036038, A325306, A000680, A327411, A014606, A327412. %K A327410 nonn %O A327410 1,2 %A A327410 _Peter Luschny_, Sep 07 2019