This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327420 #36 Nov 20 2019 05:07:56 %S A327420 1,0,2,3,6,5,9,7,15,4,14,11,21,13,16,8,35,17,26,19,30,12,28,23,46,18, %T A327420 38,10,49,29,45,31,77,20,50,27,63,37,52,24,68,41,54,43,74,25,64,47,96, %U A327420 34,62,32,95,53,70,42,94,36,86,59,91,61,88,33,166,51,85 %N A327420 Building sums recursively with the divisibility properties of their partial sums. %C A327420 Let R(n) = [k : n + 1 >= k >= 2] and divsign(s, k) = 0 if k does not divide s, else k if s/k is even and else -k. Compute s(k) = s(k+1) + divsign(s(k+1), k) with initial value s(n+2) = n + 1, k running down from n + 1 to 2. Then a(n) = s(2) if n > 0 and a(0) = s(n+2) = 0 + 1 = 1 as R(0) is empty in this case. %C A327420 Examples: If n = 8 then R(8) = [9, 8, ..., 2] and the partial sums s are [0, 8, 8, 8, 8, 12, 15, 15] giving a(8) = 15. If p is prime, then the partial sums are [0, p, p, ..., p] since p is the only integer in R(p) diving p, i. e. the primes are the fixed points of this sequence. In the example section the computation of a(9) is traced. %C A327420 Apparently the sequence is a permutation of the nonnegative integers. %H A327420 Peter Luschny, <a href="/A327420/b327420.txt">Table of n, a(n) for n = 0..10000</a> %H A327420 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the nonnegative integers</a> %F A327420 For p prime, a(p) = p. - _Bernard Schott_, Sep 14 2019 %e A327420 The computation of a(9) = 4: %e A327420 [ k: s(k) = s(k+1) + divsign(s(k+1),k)] %e A327420 [10: 0, 10, -10] %e A327420 [ 9: 9, 0, 9] %e A327420 [ 8: 9, 9, 0] %e A327420 [ 7: 9, 9, 0] %e A327420 [ 6: 9, 9, 0] %e A327420 [ 5: 9, 9, 0] %e A327420 [ 4: 9, 9, 0] %e A327420 [ 3: 6, 9, -3] %e A327420 [ 2: 4, 6, -2] %p A327420 divsign := (s, k) -> `if`(irem(s, k) <> 0, 0, (-1)^iquo(s,k)*k): %p A327420 A327420 := proc(n) local s, k; s := n + 1; %p A327420 for k from s by -1 to 2 do %p A327420 s := s + divsign(s, k) od; %p A327420 return s end: %p A327420 seq(A327420(n), n=0..66); %o A327420 (SageMath) %o A327420 def A327420(n): %o A327420 s = n + 1 %o A327420 r = srange(s, 1, -1) %o A327420 for k in r: %o A327420 if k.divides(s): %o A327420 s += (-1)^(s//k)*k %o A327420 return s %o A327420 print([A327420(n) for n in (0..66)]) %o A327420 (Julia) %o A327420 divsign(s, k) = rem(s, k) == 0 ? (-1)^div(s, k)*k : 0 %o A327420 function A327420(n) %o A327420 s = n + 1 %o A327420 for k in n+1:-1:2 s += divsign(s, k) end %o A327420 s %o A327420 end %o A327420 [A327420(n) for n in 0:66] |> println %Y A327420 Cf. A327093, A327487, A057032, A069829. %K A327420 nonn %O A327420 0,3 %A A327420 _Peter Luschny_, Sep 14 2019