cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327421 In a Kolakoski n-chain, point at which term of penultimate sequence seq(n-1) differs from term of final sequence seq(n) in chain, when terms of seq(i) are run-lengths of seq(i+1) and the chain contains n sequences.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 12, 19, 29, 44, 66, 100, 151, 227, 341, 512, 769, 1154, 1729, 2591, 3886, 5827, 8743, 13117, 19675, 29515, 44281, 66432, 99668, 149532, 224307, 336451, 504649, 756962, 1135451, 1703198, 2554847, 3832293, 5748475, 8622647
Offset: 1

Views

Author

Anthony Sand, Nov 29 2019

Keywords

Comments

The terms of the Kolakoski sequence, A000002, are the run-lengths of the same sequence. The terms of the sequence never differ from themselves and a(1) is therefore assigned the value 0. In a Kolakoski n-chain consisting of n >= 2 sequences, the terms of seq(i) are the run-lengths of seq(i+1), with the final sequence, seq(n), in the chain being the run-lengths of seq(1). The sequence above, a(n), records the term at which seq(n-1) differs from seq(n) in a chain of n sequences that use the alphabets {2,1} for seq(1) and {1,2} for seq(2..n). For example, in the Kolakoski 2-chain, A025142 and A025143, the sequences are:
seq(1) = 2,1,2,2,1,2,1,1,2,2,1,2,2,1,1,2,1,1,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,... (A025143)
seq(2) = 1,1,2,1,1,2,2,1,2,2,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2,1,1,2,1,1,2,... (A025142)
The penultimate sequence, seq(n-1 = 1), differs from the final sequence, seq(n = 2), at the 1st term and therefore a(2) = 1. In this Kolakoski 3-chain, seq(n-1) differs from seq(n) at the 2nd term and a(3) = 2:
seq(1) = 2,1,1,2,1,2,2,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,1,2,...
seq(2) = 1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,1,2,...
seq(3) = 1,2,1,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2,1,1,2,1,1,2,2,1,2,1,1,2,1,...
Conjectures: 1) In a Kolakoski n-chain of the form given, as n -> infinity, seq(n) converges on the Kolakoski sequence, A000002, whose terms always match its own run-lengths, while seq(1) converges on the anti-Kolakoski sequence, A049705, whose terms never match its own run-lengths. 2) As i -> infinity, a(i) / a(i+1) converges on 2/3.

Examples

			In this Kolakoski 4-chain, seq(n-1) differs from seq(n) at the 3rd term and a(4) = 3:
seq(1) = 2,1,1,2,2,1,2,2,1,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,...
seq(2) = 1,1,2,1,2,2,1,1,2,1,1,2,2,1,2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,2,1,2,...
seq(3) = 1,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,2,2,1,2,2,1,2,1,1,2,...
seq(4) = 1,2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,2,2,1,2,1,...
In this Kolakoski 5-chain, seq(n-1) differs from seq(n) at the 5th term and a(5) = 5:
seq(1) = 2,1,1,2,2,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,1,2,2,1,...
seq(2) = 1,1,2,1,2,2,1,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,...
seq(3) = 1,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,...
seq(4) = 1,2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,...
seq(5) = 1,2,2,1,1,2,1,1,2,1,2,2,1,2,2,1,1,2,1,2,2,1,2,1,1,2,1,1,2,2,1,2,2,...
In this Kolakoski 8-chain, seq(n-1) differs from seq(n) at the 19th term and a(8) = 19:
seq(1) = 2,1,1,2,2,1,2,1,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2,1,1,2,2,1,2,2,1,...
seq(2) = 1,1,2,1,2,2,1,1,2,1,1,2,1,2,2,1,2,1,1,2,2,1,2,2,1,1,2,1,2,2,1,2,2,...
[...]
seq(7) = 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,1,2,2,1,2,1,1,2,2,1,2,2,1,1,2,...
seq(8) = 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,2,2,1,1,2,...
		

Crossrefs