cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327431 Numbers k such that there are exactly 9 numbers j for which binomial(k, floor(k/2)) / binomial(k,j) is an integer, i.e., A080383(k) = 9.

Original entry on oeis.org

1122, 1218, 5762, 11330, 12322, 15132, 16482, 26690, 37442, 40994, 57090, 61184, 77184, 94978, 103170, 107072, 108290, 114818, 121346, 124662, 136308, 138370, 142400, 148610, 149250, 149634, 177410, 198018, 221314, 221442, 233730, 246530, 259074, 264578
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 10 2019

Keywords

Examples

			C(1122,561) is divisible by 9 binomial coefficients C(1122,0), C(1122,1), C(1122,2), C(1122,4), C(1122,561), C(1122,1118), C(1122,1120), C(1122,1121) and C(1122,1122).
		

Crossrefs

Programs

  • Magma
    a:=[]; kMax:=265000; cbc:=2; for k in [4..kMax by 2] do cbc:=(cbc*(4*k-4)) div k; count:=3; p:=PreviousPrime((k div 2) + 1); b:=1; for j in [1..k-2*p] do b:=(b*(k+1-j)) div j; if cbc mod b eq 0 then count+:=2; end if; end for; r:=1/1; for j in [(k div 2)-1..p by -1] do r:=r*(j+1)/(k-j); end for; if r le 1/2 then b:=cbc; for j in [(k div 2)-1..p by -1] do b:=(b*(j+1)) div (k-j); if cbc mod b eq 0 then count+:=2; end if; end for; end if; if count eq 9 then a[#a+1]:=k; end if; end for; a // Jon E. Schoenfield, Sep 15 2019

Extensions

Terms > 100000 from Jon E. Schoenfield, Sep 15 2019