cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327438 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.

This page as a plain text file.
%I A327438 #8 Sep 11 2019 20:22:58
%S A327438 1,1,1,3,1,6,2,1,15,7,5,2,52,53,62,31,9,1,1
%N A327438 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled antichains of nonempty subsets of {1..n} with spanning edge-connectivity k.
%C A327438 An antichain is a set of sets, none of which is a subset of any other.
%C A327438 The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.
%e A327438 Triangle begins:
%e A327438    1
%e A327438    1  1
%e A327438    3  1
%e A327438    6  2  1
%e A327438   15  7  5  2
%e A327438   52 53 62 31  9  1  1
%e A327438 The antichains counted in row n = 4 are the following:
%e A327438   0             {1234}         {12}{134}{234}     {123}{124}{134}{234}
%e A327438   {1}           {12}{134}      {123}{124}{134}    {12}{13}{14}{23}{24}{34}
%e A327438   {12}          {123}{124}     {12}{13}{24}{34}
%e A327438   {123}         {12}{13}{14}   {12}{13}{14}{234}
%e A327438   {1}{2}        {12}{13}{24}   {12}{13}{14}{23}{24}
%e A327438   {1}{23}       {12}{13}{234}
%e A327438   {12}{13}      {12}{13}{14}{23}
%e A327438   {1}{234}
%e A327438   {12}{34}
%e A327438   {1}{2}{3}
%e A327438   {1}{2}{34}
%e A327438   {2}{13}{14}
%e A327438   {12}{13}{23}
%e A327438   {1}{2}{3}{4}
%e A327438   {4}{12}{13}{23}
%Y A327438 Row sums are A306505.
%Y A327438 Column k = 0 is A327437.
%Y A327438 The labeled version is A327352.
%Y A327438 Cf. A014466, A052446, A327062, A327071, A327103, A327111, A327144, A327352, A327353.
%K A327438 nonn,tabf,more
%O A327438 0,4
%A A327438 _Gus Wiseman_, Sep 11 2019