cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327444 a(n) is the maximum absolute value of the coefficients of the quotient polynomial R_(prime(n)#)/Product_{j=1..n} R_(prime(j)), where prime(n)# is the n-th primorial number A002110(n) and R_k = (x^k - 1)/(x - 1).

This page as a plain text file.
%I A327444 #20 Sep 17 2019 09:43:23
%S A327444 1,1,2,4,7,20,34,93
%N A327444 a(n) is the maximum absolute value of the coefficients of the quotient polynomial R_(prime(n)#)/Product_{j=1..n} R_(prime(j)), where prime(n)# is the n-th primorial number A002110(n) and R_k = (x^k - 1)/(x - 1).
%C A327444 The values of the first few quotients, when x=10, are in A323060. (A file therein enumerates the coefficients of the fifth quotient.)
%C A327444 Conjecture: a(n) = exp((6n - 13 + (-1)^n)/8), approximately.
%e A327444 R_(510510)/[R_(2)*R_(3)*R_(5)*R_(7)*R_(11)*R_(13)*R_(17)] = 1 - 6x + 16x^2 - 25x^3 + ... - 34x^11313 + ... + x^510458 (and no other coefficient exceeds 34 in absolute value), so a(7) = 34.
%o A327444 (PARI) R(k) = (x^k - 1)/(x - 1);
%o A327444 a(n) = {my(v = Vec(R(prod(k=1, n, prime(k)))/prod(k=1, n, R(prime(k))))); vecmax(apply(x->abs(x), v));} \\ _Michel Marcus_, Sep 16 2019
%Y A327444 Cf. A002110, A323060.
%K A327444 nonn,more
%O A327444 1,3
%A A327444 _Patrick A. Thomas_, Sep 16 2019