This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327473 #5 Sep 13 2019 17:04:29 %S A327473 2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,30,31,32,37,41,43,47,49,53, %T A327473 59,61,64,67,71,73,79,81,83,84,89,90,97,101,103,105,107,109,110,113, %U A327473 121,125,127,128,131,137,139,149,151,157,163,167,169,173,179,181 %N A327473 Heinz numbers of integer partitions whose mean A326567/A326568 is a part. %C A327473 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A327473 The sequence of terms together with their prime indices begins: %e A327473 2: {1} %e A327473 3: {2} %e A327473 4: {1,1} %e A327473 5: {3} %e A327473 7: {4} %e A327473 8: {1,1,1} %e A327473 9: {2,2} %e A327473 11: {5} %e A327473 13: {6} %e A327473 16: {1,1,1,1} %e A327473 17: {7} %e A327473 19: {8} %e A327473 23: {9} %e A327473 25: {3,3} %e A327473 27: {2,2,2} %e A327473 29: {10} %e A327473 30: {1,2,3} %e A327473 31: {11} %e A327473 32: {1,1,1,1,1} %e A327473 37: {12} %t A327473 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A327473 Select[Range[100],MemberQ[primeMS[#],Mean[primeMS[#]]]&] %Y A327473 A subsequence of A316413. %Y A327473 Complement of A327476. %Y A327473 The enumeration of these partitions by sum is given by A237984. %Y A327473 Subsets whose mean is a part are A065795. %Y A327473 Numbers whose binary indices include their mean are A327478. %Y A327473 Cf. A000016, A056239, A067538, A112798, A240850, A325706, A326567/A326568. %K A327473 nonn %O A327473 1,1 %A A327473 _Gus Wiseman_, Sep 13 2019