This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327476 #4 Sep 13 2019 17:04:49 %S A327476 1,6,10,12,14,15,18,20,21,22,24,26,28,33,34,35,36,38,39,40,42,44,45, %T A327476 46,48,50,51,52,54,55,56,57,58,60,62,63,65,66,68,69,70,72,74,75,76,77, %U A327476 78,80,82,85,86,87,88,91,92,93,94,95,96,98,99,100,102,104,106 %N A327476 Heinz numbers of integer partitions whose mean A326567/A326568 is not a part. %C A327476 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A327476 The sequence of terms together with their prime indices begins: %e A327476 1: {} %e A327476 6: {1,2} %e A327476 10: {1,3} %e A327476 12: {1,1,2} %e A327476 14: {1,4} %e A327476 15: {2,3} %e A327476 18: {1,2,2} %e A327476 20: {1,1,3} %e A327476 21: {2,4} %e A327476 22: {1,5} %e A327476 24: {1,1,1,2} %e A327476 26: {1,6} %e A327476 28: {1,1,4} %e A327476 33: {2,5} %e A327476 34: {1,7} %e A327476 35: {3,4} %e A327476 36: {1,1,2,2} %e A327476 38: {1,8} %e A327476 39: {2,6} %e A327476 40: {1,1,1,3} %t A327476 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A327476 Select[Range[100],!MemberQ[primeMS[#],Mean[primeMS[#]]]&] %Y A327476 Complement of A327473. %Y A327476 The enumeration of these partitions by sum is given by A327472. %Y A327476 Subsets whose mean is not an element are A327471. %Y A327476 Cf. A056239, A067538, A112798, A114639, A237984, A240851, A316413, A324756, A324758, A326567/A326568, A327477. %K A327476 nonn %O A327476 1,2 %A A327476 _Gus Wiseman_, Sep 13 2019