This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327477 #16 Feb 22 2023 01:44:49 %S A327477 0,0,1,2,6,12,26,54,112,226,460,930,1876,3780,7606,15288,30720,61680, %T A327477 123786,248346,498072,998636,2001826,4011942,8039072,16106124, %U A327477 32263876,64623330,129424236,259179060,518975176,1039104990,2080374784,4164816708,8337289456 %N A327477 Number of subsets of {1..n} containing n whose mean is not an element. %F A327477 From _Alois P. Heinz_, Feb 21 2023: (Start) %F A327477 a(n) = A327471(n) - A327471(n-1) for n>=1. %F A327477 a(n) = 2^(n-1) - A000016(n) for n>=1. (End) %e A327477 The a(1) = 1 through a(5) = 12 subsets: %e A327477 {1,2} {1,3} {1,4} {1,5} %e A327477 {2,3} {2,4} {2,5} %e A327477 {3,4} {3,5} %e A327477 {1,2,4} {4,5} %e A327477 {1,3,4} {1,2,5} %e A327477 {1,2,3,4} {1,4,5} %e A327477 {2,3,5} %e A327477 {2,4,5} %e A327477 {1,2,3,5} %e A327477 {1,2,4,5} %e A327477 {1,3,4,5} %e A327477 {2,3,4,5} %t A327477 Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!MemberQ[#,Mean[#]]&]],{n,0,10}] %o A327477 (Python) %o A327477 from sympy import totient, divisors %o A327477 def A327477(n): return (1<<n-1)-sum(totient(d)<<n//d-1 for d in divisors(n>>(~n&n-1).bit_length(),generator=True))//n if n else 0 # _Chai Wah Wu_, Feb 21 2023 %Y A327477 Subsets whose mean is an element are A065795. %Y A327477 Subsets whose mean is not an element are A327471. %Y A327477 Subsets containing n whose mean is an element are A000016. %Y A327477 Cf. A007865, A051293, A082550, A135342, A240851, A324741, A327472. %K A327477 nonn %O A327477 0,4 %A A327477 _Gus Wiseman_, Sep 13 2019 %E A327477 a(25)-a(34) from _Alois P. Heinz_, Feb 21 2023