cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327479 a(n) is the minimum number of squares of unit area that must be removed from an n X n square to obtain a connected figure without holes and of the longest perimeter.

This page as a plain text file.
%I A327479 #31 Sep 08 2022 08:46:24
%S A327479 0,0,0,4,6,12,16,28,32,44,52,68,76,92,104,124,136,156,172,196,212,236,
%T A327479 256,284,304,332,356,388,412,444,472,508,536,572,604,644,676,716,752,
%U A327479 796,832,876,916,964,1004,1052,1096,1148,1192,1244,1292,1348,1396,1452,1504
%N A327479 a(n) is the minimum number of squares of unit area that must be removed from an n X n square to obtain a connected figure without holes and of the longest perimeter.
%C A327479 a(n) is equal to h_1(n) as defined in A309038.
%C A327479 All the terms are even numbers (A005843).
%H A327479 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,-2,1).
%F A327479 O.g.f.: 2*x^3*(-2 + x - 2*x^2 + x^3 - 2*x^4 + 3*x^5 - 2*x^6 + x^7)/((-1 + x)^3*(1 + x + x^2 + x^3)).
%F A327479 E.g.f.: 8 + 4*x + 2*x^2 + x^4/12 + (1/4)*(-7*exp(-x) + exp(x)*(-25 + 6*x + 2*x^2) - 4*sin(x)).
%F A327479 a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n > 10.
%F A327479 a(n) = (1/4)*(- 25 + 2*n*(2 + n) - 7*cos(n*Pi) - 4*sin(n*Pi/2)) for n > 4, a(0) = 0, a(1) = 0, a(2) = 0, a(3) = 4, a(4) = 6.
%F A327479 Lim_{n->inf} a(n)/A000290(n) = 1/2.
%e A327479 Illustrations for n = 3..8:
%e A327479       __    __               __    __.__             __    __.__.__
%e A327479      |__|__|__|             |__|__|__.__|           |__|__|__.__.__|
%e A327479       __|__|__               __|__|__.__             __|__|__    __
%e A327479      |__|  |__|             |  |  |     |           |  |  |__|__|__|
%e A327479                             |__|  |__.__|           |  |   __|__|__
%e A327479                                                     |__|  |__|  |__|
%e A327479       a(3) = 4                a(4) = 6                  a(5) = 12
%e A327479    __    __    __.__     __    __    __    __     __    __    __    __.__
%e A327479   |__|__|__|  |__   |   |__|__|__|  |__|__|__|   |__|__|__|  |__|__|__   |
%e A327479    __|__|__    __|  |    __|__|__    __|__|__     __|__|__    __|  |  |__|
%e A327479   |__|  |__|__|__.__|   |__|  |__|__|__|  |__|   |__|  |__|__|__.__|   __
%e A327479    __    __|__|__.__     __    __|__|__    __     __    __|__|__    __|  |
%e A327479   |  |__|  |  |     |   |__|__|__|  |__|__|__|   |__|__|  |  |__|__|__.__|
%e A327479   |__.__.__|  |__.__|    __|__|__    __|__|__     __|__.__|   __|__|__.__
%e A327479                         |__|  |__|  |__|  |__|   |  |__    __|  |  |     |
%e A327479                                                  |__.__|  |__.__|  |__.__|
%e A327479      a(6) = 16                a(7) = 28                 a(8) = 32
%p A327479 gf := 8+4*x+2*x^2+(1/12)*x^4+1/4*(-7*exp(-x)+exp(x)*(2*x^2+6*x-25)-4*sin(x)):
%p A327479 ser := series(gf, x, 55): seq(factorial(n)*coeff(ser, x, n), n = 0..54);
%t A327479 Join[{0,0,0,4,6},Table[(1/4)*(-25+2n*(2+n)-7*Cos[n*Pi]-4*Sin[n*Pi/2]),{n,5,54}]]
%o A327479 (Magma) I:=[0, 0, 0, 4, 6, 12, 16, 28, 32, 44, 52]; [n le 11 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4)-2*Self(n-5)+Self(n-6): n in [1..55]];
%o A327479 (PARI) concat([0, 0, 0], Vec(2*x^3*(-2+x-2*x^2+x^3-2*x^4+3*x^5-2*x^6+x^7)/((-1+x)^3*(1+x+x^2+x^3))+O(x^55)))
%Y A327479 Cf. A000290, A005843, A309038, A326118, A327480.
%K A327479 nonn,easy
%O A327479 0,4
%A A327479 _Stefano Spezia_, Sep 16 2019