cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327480 a(n) is the maximum number of squares of unit area that can be removed from an n X n square while still obtaining a connected figure without holes and of the longest perimeter.

This page as a plain text file.
%I A327480 #42 Dec 17 2024 08:44:00
%S A327480 0,0,2,4,8,12,22,28,40,48,64,76,94,108,130,148,172,192,220,244,274,
%T A327480 300,334,364,400,432,472,508,550,588,634,676,724,768,820,868,922,972,
%U A327480 1030,1084,1144,1200,1264,1324,1390,1452,1522,1588,1660,1728,1804,1876,1954
%N A327480 a(n) is the maximum number of squares of unit area that can be removed from an n X n square while still obtaining a connected figure without holes and of the longest perimeter.
%C A327480 a(n) is equal to h_1(n) + h_2(n) as defined in A309038.
%H A327480 Stefano Spezia, <a href="/A327480/b327480.txt">Table of n, a(n) for n = 0..10000</a>
%H A327480 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,1,-2,1).
%F A327480 O.g.f.: 2*x^2*(1 + x^2 + 2*x^4 - 2*x^5 + 2*x^6 - 2*x^7 + x^8)/((1 - x)^3*(1 + x)*(1 + x^2)).
%F A327480 E.g.f.: (1/24)*exp(-x)*(33 + 9*exp(2*x)*(7 - 2*x + 2*x^2) - 2*exp(x)*(48 + 12*x^2 + x^4) - 12*exp(x)*sin(x)).
%F A327480 a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n > 10.
%F A327480 a(n) = (1/8)*(21 - 12*n + 6*n^2 + 11*(-1)^n + 4*A056594(n+1)) for n > 4, a(0) = 0, a(1) = 0, a(2) = 2, a(3) = 4, a(4) = 8. [corrected by _Jason Yuen_, Dec 17 2024]
%F A327480 Limit_{n->oo} a(n)/A000290(n) = 3/4.
%e A327480 Illustrations for n = 2..7:
%e A327480       __                      __    __                __    __
%e A327480      |__|__                  |__|__|__|              |__|__|__|
%e A327480         |__|                  __|__|__                __|__|__ __
%e A327480                              |__|  |__|              |__|  |     |
%e A327480                                                            |__ __|
%e A327480       a(2) = 2                a(3) = 4                  a(4) = 8
%e A327480    __    __ __ __     __    __    __         __    __    __    __
%e A327480   |__|__|__ __ __|   |__|__|__|  |__|__     |__|__|__|  |__|__|__|
%e A327480    __|__|__    __     __|__|__    __|__|     __|__|__    __|__|__
%e A327480   |  |  |__|__|__|   |__|  |__|__|__|       |__|  |__|__|__|  |__|
%e A327480   |  |   __|__|__     __    __|__|__         __    __|__|__    __
%e A327480   |__|  |__|  |__|   |__|__|__|  |__|__     |__|__|__|  |__|__|__|
%e A327480                         |__|        |__|     __|__|__    __|__|__
%e A327480                                             |__|  |__|  |__|  |__|
%e A327480       a(5) = 12           a(6) = 22               a(7) = 28
%p A327480 gf := (1/24)*exp(-x)*(33+9*exp(2*x)*(2*x^2-2*x+7)-2*exp(x)*(x^4+12*x^2+48)-12*exp(x)*sin(x)); ser := series(gf, x, 53):
%p A327480 seq(factorial(n)*coeff(ser, x, n), n = 0 .. 52)
%t A327480 Join[{0,0,2,4,8},Table[(1/8)*(21-12n+6n^2+11*(-1)^n-4*Sin[n*Pi/2]),{n,5,52}]]
%o A327480 (Magma) I:=[0, 0, 2, 4, 8, 12, 22, 28, 40, 48, 64]; [n le 11 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4)-2*Self(n-5)+Self(n-6): n in [1..53]];
%o A327480 (PARI) concat([0, 0], Vec(2*x^2*(1+x^2+2*x^4-2*x^5+2*x^6-2*x^7+x^8)/((1-x)^3*(1+x)*(1+x^2))+O(x^53)))
%Y A327480 Cf. A000290, A056594, A309038, A326118, A327479.
%K A327480 nonn,easy
%O A327480 0,3
%A A327480 _Stefano Spezia_, Sep 16 2019