cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327481 Triangle read by rows where T(n,k) is the number of nonempty subsets of {1..n} with mean k.

This page as a plain text file.
%I A327481 #7 Sep 13 2019 17:05:11
%S A327481 1,1,1,1,3,1,1,3,3,1,1,3,7,3,1,1,3,9,9,3,1,1,3,9,19,9,3,1,1,3,9,25,25,
%T A327481 9,3,1,1,3,9,29,51,29,9,3,1,1,3,9,31,75,75,31,9,3,1,1,3,9,31,93,151,
%U A327481 93,31,9,3,1,1,3,9,31,105,235,235,105,31,9,3,1
%N A327481 Triangle read by rows where T(n,k) is the number of nonempty subsets of {1..n} with mean k.
%C A327481 All terms are odd.
%e A327481 Triangle begins:
%e A327481                          1
%e A327481                        1   1
%e A327481                      1   3   1
%e A327481                    1   3   3   1
%e A327481                  1   3   7   3   1
%e A327481                1   3   9   9   3   1
%e A327481              1   3   9  19   9   3   1
%e A327481            1   3   9  25  25   9   3   1
%e A327481          1   3   9  29  51  29   9   3   1
%e A327481        1   3   9  31  75  75  31   9   3   1
%e A327481      1   3   9  31  93 151  93  31   9   3   1
%e A327481    1   3   9  31 105 235 235 105  31   9   3   1
%e A327481 The subsets counted in row n = 5:
%e A327481   {1}  {2}      {3}          {4}      {5}
%e A327481        {1,3}    {1,5}        {3,5}
%e A327481        {1,2,3}  {2,4}        {3,4,5}
%e A327481                 {1,3,5}
%e A327481                 {2,3,4}
%e A327481                 {1,2,4,5}
%e A327481                 {1,2,3,4,5}
%t A327481 Table[Length[Select[Subsets[Range[n]],Mean[#]==k&]],{n,10},{k,n}]
%Y A327481 Row sums are A051293.
%Y A327481 The sequence of rows converges to A066571.
%Y A327481 The version for partitions is A327482.
%Y A327481 Cf. A000016, A063776, A065795, A135342, A327474, A327475, A327483, A327484.
%K A327481 nonn,tabl
%O A327481 1,5
%A A327481 _Gus Wiseman_, Sep 13 2019