This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327483 #31 Sep 21 2023 19:30:51 %S A327483 1,1,1,1,2,1,1,5,4,1,1,22,34,8,1,1,231,919,249,16,1,1,8349,112540, %T A327483 55974,1906,32,1,1,1741630,107608848,161410965,4602893,14905,64,1,1, %U A327483 4351078600,1949696350591,12623411092535,676491536028,461346215,117874,128,1 %N A327483 Triangle read by rows where T(n,k) is the number of integer partitions of 2^n with mean 2^k, 0 <= k <= n. %C A327483 T(n,k) is the number of partitions of 2^n into 2^(n-k) parts. - _Chai Wah Wu_, Sep 21 2023 %H A327483 Alois P. Heinz, <a href="/A327483/b327483.txt">Rows n = 0..13, flattened</a> %F A327483 T(n+1,n) = 2^n for n >= 0. - _Chai Wah Wu_, Sep 14 2019 %e A327483 Triangle begins: %e A327483 1 %e A327483 1 1 %e A327483 1 2 1 %e A327483 1 5 4 1 %e A327483 1 22 34 8 1 %e A327483 1 231 919 249 16 1 %e A327483 1 8349 112540 55974 1906 32 1 %e A327483 1 1741630 107608848 161410965 4602893 14905 64 1 %e A327483 ... %t A327483 Table[Length[Select[IntegerPartitions[2^n],Mean[#]==2^k&]],{n,0,5},{k,0,n}] %o A327483 (Python) %o A327483 from sympy.utilities.iterables import partitions %o A327483 from sympy import npartitions %o A327483 def A327483_T(n,k): %o A327483 if k == 0 or k == n: return 1 %o A327483 if k == n-1: return 1<<n-1 %o A327483 if k == 1: return npartitions(1<<n-1) %o A327483 a, b = 1<<n, 1<<n-k %o A327483 return sum(1 for s,p in partitions(a,m=b,size=True) if s==b) # _Chai Wah Wu_, Sep 21 2023 %o A327483 (Python) %o A327483 # uses A008284_T %o A327483 def A327483_T(n,k): return A008284_T(1<<n,1<<n-k) # _Chai Wah Wu_, Sep 21 2023 %Y A327483 Row sums are A327484. %Y A327483 Column k = 1 is A068413 (shifted once to the right). %Y A327483 Cf. A067538, A237984, A240850, A327481, A327482. %K A327483 nonn,tabl %O A327483 0,5 %A A327483 _Gus Wiseman_, Sep 13 2019 %E A327483 a(28)-a(35) from _Chai Wah Wu_, Sep 14 2019 %E A327483 Row n=8 from _Alois P. Heinz_, Sep 21 2023