cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327483 Triangle read by rows where T(n,k) is the number of integer partitions of 2^n with mean 2^k, 0 <= k <= n.

This page as a plain text file.
%I A327483 #31 Sep 21 2023 19:30:51
%S A327483 1,1,1,1,2,1,1,5,4,1,1,22,34,8,1,1,231,919,249,16,1,1,8349,112540,
%T A327483 55974,1906,32,1,1,1741630,107608848,161410965,4602893,14905,64,1,1,
%U A327483 4351078600,1949696350591,12623411092535,676491536028,461346215,117874,128,1
%N A327483 Triangle read by rows where T(n,k) is the number of integer partitions of 2^n with mean 2^k, 0 <= k <= n.
%C A327483 T(n,k) is the number of partitions of 2^n into 2^(n-k) parts. - _Chai Wah Wu_, Sep 21 2023
%H A327483 Alois P. Heinz, <a href="/A327483/b327483.txt">Rows n = 0..13, flattened</a>
%F A327483 T(n+1,n) = 2^n for n >= 0. - _Chai Wah Wu_, Sep 14 2019
%e A327483 Triangle begins:
%e A327483       1
%e A327483       1       1
%e A327483       1       2         1
%e A327483       1       5         4         1
%e A327483       1      22        34         8       1
%e A327483       1     231       919       249      16     1
%e A327483       1    8349    112540     55974    1906    32  1
%e A327483       1 1741630 107608848 161410965 4602893 14905 64 1
%e A327483       ...
%t A327483 Table[Length[Select[IntegerPartitions[2^n],Mean[#]==2^k&]],{n,0,5},{k,0,n}]
%o A327483 (Python)
%o A327483 from sympy.utilities.iterables import partitions
%o A327483 from sympy import npartitions
%o A327483 def A327483_T(n,k):
%o A327483     if k == 0 or k == n: return 1
%o A327483     if k == n-1: return 1<<n-1
%o A327483     if k == 1: return npartitions(1<<n-1)
%o A327483     a, b = 1<<n, 1<<n-k
%o A327483     return sum(1 for s,p in partitions(a,m=b,size=True) if s==b) # _Chai Wah Wu_, Sep 21 2023
%o A327483 (Python)
%o A327483 # uses A008284_T
%o A327483 def A327483_T(n,k): return A008284_T(1<<n,1<<n-k) # _Chai Wah Wu_, Sep 21 2023
%Y A327483 Row sums are A327484.
%Y A327483 Column k = 1 is A068413 (shifted once to the right).
%Y A327483 Cf. A067538, A237984, A240850, A327481, A327482.
%K A327483 nonn,tabl
%O A327483 0,5
%A A327483 _Gus Wiseman_, Sep 13 2019
%E A327483 a(28)-a(35) from _Chai Wah Wu_, Sep 14 2019
%E A327483 Row n=8 from _Alois P. Heinz_, Sep 21 2023