cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327484 Number of integer partitions of 2^n whose mean is a power of 2.

This page as a plain text file.
%I A327484 #26 Sep 22 2023 02:12:06
%S A327484 1,2,4,11,66,1417,178803,275379307,15254411521973,
%T A327484 108800468645440803267,964567296140908420613296779144,
%U A327484 219614169629364529542990295052656098001967511,38626966436500261962963100479469496821891576834974275502742922521
%N A327484 Number of integer partitions of 2^n whose mean is a power of 2.
%C A327484 Number of partitions of 2^n whose number of parts is a power of 2. - _Chai Wah Wu_, Sep 21 2023
%H A327484 Chai Wah Wu, <a href="/A327484/b327484.txt">Table of n, a(n) for n = 0..15</a> (n = 0..13 from Alois P. Heinz)
%e A327484 The a(0) = 1 through a(3) = 11 partitions:
%e A327484   (1)  (2)   (4)     (8)
%e A327484        (11)  (22)    (44)
%e A327484              (31)    (53)
%e A327484              (1111)  (62)
%e A327484                      (71)
%e A327484                      (2222)
%e A327484                      (3221)
%e A327484                      (3311)
%e A327484                      (4211)
%e A327484                      (5111)
%e A327484                      (11111111)
%t A327484 Table[Length[Select[IntegerPartitions[2^n],IntegerQ[Mean[#]]&]],{n,0,5}]
%o A327484 (Python)
%o A327484 from sympy.utilities.iterables import partitions
%o A327484 def A327484(n): return sum(1 for s,p in partitions(1<<n,size=True) if not(s&-s)^s) # _Chai Wah Wu_, Sep 21 2023
%o A327484 (Python)
%o A327484 # uses A008284_T
%o A327484 def A327484(n): return sum(A008284_T(1<<n,1<<k) for k in range(n+1)) # _Chai Wah Wu_, Sep 21 2023
%Y A327484 Row sums of A327483.
%Y A327484 Cf. A067538, A068413, A135342, A237984, A327474, A327481, A327482.
%K A327484 nonn
%O A327484 0,2
%A A327484 _Gus Wiseman_, Sep 13 2019
%E A327484 a(7) from _Chai Wah Wu_, Sep 14 2019
%E A327484 a(8)-a(11) from _Alois P. Heinz_, Sep 21 2023
%E A327484 a(12) from _Chai Wah Wu_, Sep 21 2023