This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327484 #26 Sep 22 2023 02:12:06 %S A327484 1,2,4,11,66,1417,178803,275379307,15254411521973, %T A327484 108800468645440803267,964567296140908420613296779144, %U A327484 219614169629364529542990295052656098001967511,38626966436500261962963100479469496821891576834974275502742922521 %N A327484 Number of integer partitions of 2^n whose mean is a power of 2. %C A327484 Number of partitions of 2^n whose number of parts is a power of 2. - _Chai Wah Wu_, Sep 21 2023 %H A327484 Chai Wah Wu, <a href="/A327484/b327484.txt">Table of n, a(n) for n = 0..15</a> (n = 0..13 from Alois P. Heinz) %e A327484 The a(0) = 1 through a(3) = 11 partitions: %e A327484 (1) (2) (4) (8) %e A327484 (11) (22) (44) %e A327484 (31) (53) %e A327484 (1111) (62) %e A327484 (71) %e A327484 (2222) %e A327484 (3221) %e A327484 (3311) %e A327484 (4211) %e A327484 (5111) %e A327484 (11111111) %t A327484 Table[Length[Select[IntegerPartitions[2^n],IntegerQ[Mean[#]]&]],{n,0,5}] %o A327484 (Python) %o A327484 from sympy.utilities.iterables import partitions %o A327484 def A327484(n): return sum(1 for s,p in partitions(1<<n,size=True) if not(s&-s)^s) # _Chai Wah Wu_, Sep 21 2023 %o A327484 (Python) %o A327484 # uses A008284_T %o A327484 def A327484(n): return sum(A008284_T(1<<n,1<<k) for k in range(n+1)) # _Chai Wah Wu_, Sep 21 2023 %Y A327484 Row sums of A327483. %Y A327484 Cf. A067538, A068413, A135342, A237984, A327474, A327481, A327482. %K A327484 nonn %O A327484 0,2 %A A327484 _Gus Wiseman_, Sep 13 2019 %E A327484 a(7) from _Chai Wah Wu_, Sep 14 2019 %E A327484 a(8)-a(11) from _Alois P. Heinz_, Sep 21 2023 %E A327484 a(12) from _Chai Wah Wu_, Sep 21 2023