cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327486 Product of Omegas of positive integers from 2 to n.

This page as a plain text file.
%I A327486 #10 Sep 29 2019 12:20:14
%S A327486 1,1,1,2,2,4,4,12,24,48,48,144,144,288,576,2304,2304,6912,6912,20736,
%T A327486 41472,82944,82944,331776,663552,1327104,3981312,11943936,11943936,
%U A327486 35831808,35831808,179159040,358318080,716636160,1433272320,5733089280,5733089280,11466178560
%N A327486 Product of Omegas of positive integers from 2 to n.
%C A327486 Omega(n) (A001222) is the number of prime factors of n, counted with multiplicity.
%C A327486 Also the number of ways to choose a prime factor, counting multiplicity, of each positive integer from 2 to n.
%F A327486 a(n > 1) = a(n - 1) * A001222(n).
%e A327486 We have a(8) = 1 * 1 * 2 * 1 * 2 * 1 * 3 = 12.
%p A327486 a:= proc(n) option remember; `if`(n<2, n,
%p A327486       numtheory[bigomega](n)*a(n-1))
%p A327486     end:
%p A327486 seq(a(n), n=1..40);  # _Alois P. Heinz_, Sep 29 2019
%t A327486 Table[Product[PrimeOmega[k],{k,2,n}],{n,30}]
%o A327486 (PARI) a(n) = prod(k=2, n, bigomega(k)); \\ _Michel Marcus_, Sep 29 2019
%Y A327486 Partial products of A001222.
%Y A327486 Cf. A001221, A056239, A071625, A112798, A118914, A316413, A327485.
%K A327486 nonn
%O A327486 1,4
%A A327486 _Gus Wiseman_, Sep 28 2019