This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327487 #23 Feb 29 2020 04:21:28 %S A327487 1,2,-2,3,-3,2,4,-4,3,0,5,-5,4,0,2,6,-6,5,0,0,0,7,-7,6,0,0,3,0,8,-8,7, %T A327487 0,0,0,0,0,9,-9,8,0,0,0,4,3,0,10,-10,9,0,0,0,0,0,-3,-2,11,-11,10,0,0, %U A327487 0,0,5,0,-3,2,12,-12,11,0,0,0,0,0,0,0,0,0 %N A327487 T(n, k) are the summands given by the generating function of A327420(n), triangle read by rows, T(n,k) for 0 <= k <= n. %F A327487 Sum_{k=0..n} T(n, k) = A327420(n). %e A327487 Triangle starts (at the end of the line is the row sum (A327420)): %e A327487 [ 0] [ 1] 1 %e A327487 [ 1] [ 2, -2] 0 %e A327487 [ 2] [ 3, -3, 2] 2 %e A327487 [ 3] [ 4, -4, 3, 0] 3 %e A327487 [ 4] [ 5, -5, 4, 0, 2] 6 %e A327487 [ 5] [ 6, -6, 5, 0, 0, 0] 5 %e A327487 [ 6] [ 7, -7, 6, 0, 0, 3, 0] 9 %e A327487 [ 7] [ 8, -8, 7, 0, 0, 0, 0, 0] 7 %e A327487 [ 8] [ 9, -9, 8, 0, 0, 0, 4, 3, 0] 15 %e A327487 [ 9] [10, -10, 9, 0, 0, 0, 0, 0, -3, -2] 4 %e A327487 [10] [11, -11, 10, 0, 0, 0, 0, 5, 0, -3, 2] 14 %o A327487 (SageMath) %o A327487 def divsign(s, k): %o A327487 if not k.divides(s): return 0 %o A327487 return (-1)^(s//k)*k %o A327487 def A327487row(n): %o A327487 s = n + 1 %o A327487 r = srange(s, 1, -1) %o A327487 S = [-divsign(s, s)] %o A327487 for k in r: %o A327487 s += divsign(s, k) %o A327487 S.append(-divsign(s, k)) %o A327487 return S %o A327487 # Prints the triangle like in the example section. %o A327487 for n in (0..10): %o A327487 print([n], A327487row(n), sum(A327487row(n))) %Y A327487 Cf. A327420, A327093, A057032, A069829. %K A327487 sign,tabl %O A327487 0,2 %A A327487 _Peter Luschny_, Sep 14 2019