This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327492 #22 Aug 30 2024 06:25:28 %S A327492 0,2,3,5,7,9,10,12,15,17,18,20,22,24,25,27,31,33,34,36,38,40,41,43,46, %T A327492 48,49,51,53,55,56,58,63,65,66,68,70,72,73,75,78,80,81,83,85,87,88,90, %U A327492 94,96,97,99,101,103,104,106,109,111,112,114,116,118,119 %N A327492 Partial sums of A327491. %H A327492 Amiram Eldar, <a href="/A327492/b327492.txt">Table of n, a(n) for n = 0..10000</a> %F A327492 a(n) = A005187(n) + n mod 2. %F A327492 a(n) ~ 2*n. - _Amiram Eldar_, Aug 30 2024 %p A327492 # For len >= 1: %p A327492 A327492_list := len -> ListTools:-PartialSums([seq(A327491(j), j=0..len-1)]): %p A327492 A327492_list(99) %t A327492 a[n_] := 2*n + Mod[n, 2] - DigitCount[2*n, 2, 1]; Array[a, 100, 0] (* _Amiram Eldar_, Aug 30 2024 *) %o A327492 (SageMath) %o A327492 @cached_function %o A327492 def A327492(n): %o A327492 if n == 0: return 0 %o A327492 r = valuation(n, 2) if 4.divides(n) else n % 2 + 1 %o A327492 return r + A327492(n-1) %o A327492 print([A327492(n) for n in (0..19)]) %o A327492 (PARI) seq(n)={my(a=vector(n+1)); for(n=1, n, a[n+1] = a[n] + if(n%4, n%2 + 1, valuation(n,2))); a} \\ _Andrew Howroyd_, Sep 28 2019 %o A327492 (PARI) a(n) = n<<1 - hammingweight(n) + bittest(n,0); \\ _Kevin Ryde_, May 31 2022 %o A327492 (Julia) %o A327492 bitcount(n) = sum(digits(n, base = 2)) %o A327492 A327492(n) = 2n - bitcount(n) + mod(n, 2) %o A327492 [A327492(n) for n in 0:62] |> println # _Peter Luschny_, Oct 03 2019 %Y A327492 Cf. A327491, A005187, A327493, A327494, A327495. %K A327492 nonn,easy %O A327492 0,2 %A A327492 _Peter Luschny_, Sep 27 2019