cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327497 a(n) = Numerator([x^n] (4*sinh(sqrt(x)/2)^2*cosh(sqrt(x)))/x).

Original entry on oeis.org

1, 7, 31, 127, 73, 2047, 8191, 4681, 131071, 524287, 42799, 8388607, 33554431, 19173961, 536870911, 2147483647, 53353631, 1108378657, 137438953471, 78536544841, 2199023255551, 8796093022207, 162139963543, 140737488355327, 562949953421311, 321685687669321
Offset: 0

Views

Author

Peter Luschny, Oct 05 2019

Keywords

Examples

			r(n) = 1, 7/12, 31/360, 127/20160, 73/259200, 2047/239500800, 8191/43589145600, ...
		

Crossrefs

Denominators in A327986.

Programs

  • Maple
    gf := (4*sinh(sqrt(x)/2)^2*cosh(sqrt(x)))/x: ser := series(gf, x, 40):
    seq(numer(coeff(ser, x, n)), n=0..25);
    # Alternative:
    a := s -> (2*s + 1)!/(2^(2*s + 1) - 1):
    seq(denom(a(n)), n = 0..25); # Peter Luschny, Jul 18 2021
  • Mathematica
    a[s_] := ((1 - 2^(-1 - 2 s)) Pi^(-2 - 2 s) Cos[Pi s] Zeta[2 + 2 s])/(4 (1 - 2^(2 + 2 s)) Zeta[-1 - 2 s]);
    Array[a, 26, 0] // Numerator (* Peter Luschny, Jun 13 2020 *)

Formula

a(n) = numerator([x^n] (cosh(2*sqrt(x)) - 2*cosh(sqrt(x)) + 1)/x).
a(n) = numerator (1/8)*cos(Pi*n)*Zeta(2*n+2)*Pi^(-2*n-2)/(-1+2^(2*n+2))*(-2+4^(-n))/Zeta(-1-2*n). - Peter Luschny, Jun 13 2020
a(n) = denominator((2*n + 1)!/(2^(2*n + 1) - 1)). - Peter Luschny, Jul 18 2021