This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327498 #26 Apr 02 2022 17:47:49 %S A327498 1,2,3,4,5,3,7,8,9,5,11,12,13,7,5,16,17,18,19,20,7,11,23,24,25,13,27, %T A327498 28,29,5,31,32,11,17,7,18,37,19,13,40,41,7,43,44,45,23,47,48,49,50,17, %U A327498 52,53,54,11,56,19,29,59,20,61,31,63,64,13,11,67,68,23 %N A327498 Maximum divisor of n whose prime multiplicities are distinct (A130091). %C A327498 A number's prime multiplicities are also called its (unsorted) prime signature. %C A327498 Every positive integer appears a finite number of times in the sequence; a prime p occurs 2^(PrimePi(p) - 1) times. - _David A. Corneth_, Sep 17 2019 %H A327498 David A. Corneth, <a href="/A327498/b327498.txt">Table of n, a(n) for n = 1..10000</a> %H A327498 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a> %F A327498 a(A130091(n)) = n and a(A130092(n)) < n. - _Ivan N. Ianakiev_, Sep 17 2019 %F A327498 a(n) = n / A327499(n). - _Antti Karttunen_, Apr 02 2022 %e A327498 The divisors of 60 whose prime multiplicities are distinct are {1, 2, 3, 4, 5, 12, 20}, so a(60) = 20, the largest of these divisors. %t A327498 Table[Max[Select[Divisors[n],UnsameQ@@Last/@FactorInteger[#]&]],{n,100}] %o A327498 (PARI) a(n) = {my(m = Map(), f = factor(n), res = 1); forstep(i = #f~, 1, -1, forstep(j = f[i, 2], 1, -1, if(!mapisdefined(m, j), mapput(m, j, j); res*=f[i, 1]^j; next(2)))); res} \\ _David A. Corneth_, Sep 17 2019 %o A327498 (PARI) %o A327498 A351564(n) = issquarefree(factorback(apply(e->prime(e),(factor(n)[,2])))); %o A327498 A327498(n) = fordiv(n,d,if(A351564(n/d), return(n/d))); \\ _Antti Karttunen_, Apr 02 2022 %Y A327498 See link for additional cross-references. %Y A327498 Cf. A000005, A000720, A007916, A098859, A124010, A181796, A212168, A255231, A327499, A351564. %K A327498 nonn,easy %O A327498 1,2 %A A327498 _Gus Wiseman_, Sep 16 2019