This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327502 #14 Sep 28 2019 22:20:38
%S A327502 1,1,1,2,1,1,1,4,3,1,1,1,1,1,1,8,1,1,1,1,1,1,1,1,5,1,9,1,1,1,1,16,1,1,
%T A327502 1,2,1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,32,1,1,1,1,
%U A327502 1,1,1,1,1,1,1,1,1,1,1,1,27,1,1,1,1,1
%N A327502 a(n) = n/A327501(n), where A327501(n) is the maximum divisor of n that is 1 or not a perfect power.
%C A327502 This maximum divisor is given by A327501.
%C A327502 A multiset is aperiodic if its multiplicities are relatively prime. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). Heinz numbers of aperiodic multisets are numbers that are not perfect powers (A007916).
%H A327502 Antti Karttunen, <a href="/A327502/b327502.txt">Table of n, a(n) for n = 1..16383</a>
%H A327502 Antti Karttunen, <a href="/A327502/a327502.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H A327502 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a>
%F A327502 a(n) = n/A327501(n).
%e A327502 The divisors of 36 that are 1 or not a perfect power are {1, 2, 3, 6, 12, 18}, so a(36) = 36/18 = 2.
%t A327502 Table[n/Max[Select[Divisors[n],GCD@@Last/@FactorInteger[#]==1&]],{n,100}]
%o A327502 (PARI) A327502(n) = if(n==1, 1, n/vecmax(select(x->((x>1) && !ispower(x)), divisors(n)))); \\ _Antti Karttunen_, Sep 19 2019 (after program given by _Michel Marcus_ for A327501)
%Y A327502 See link for additional cross-references.
%Y A327502 Cf. A000005, A000961, A001597, A007916, A303386, A327501.
%K A327502 nonn,look
%O A327502 1,4
%A A327502 _Gus Wiseman_, Sep 16 2019