This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327504 #14 May 08 2022 08:24:35 %S A327504 1,0,0,1,6,25,100,511,3626,29765,250200,2146771,19575446,195336505, %T A327504 2124840900,24646324431,299803782466,3809251939245,50698296967600, %U A327504 708349718638891,10372758309704686,158546862369781985,2519789706502636700,41545703617137280551 %N A327504 Number of set partitions of [n] where each subset is again partitioned into three nonempty subsets. %H A327504 Alois P. Heinz, <a href="/A327504/b327504.txt">Table of n, a(n) for n = 0..501</a> %H A327504 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A327504 E.g.f.: exp((exp(x)-1)^3/3!). %F A327504 a(n) = Sum_{k=0..floor(n/3)} (3*k)! * Stirling2(n,3*k)/(6^k * k!). - _Seiichi Manyama_, May 07 2022 %p A327504 a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j) %p A327504 *binomial(n-1, j-1)*Stirling2(j, 3), j=3..n)) %p A327504 end: %p A327504 seq(a(n), n=0..25); %t A327504 a[n_] := a[n] = If[n == 0, 1, Sum[a[n - j] Binomial[n - 1, j -1] StirlingS2[j, 3], {j, 3, n}]]; %t A327504 a /@ Range[0, 25] (* _Jean-François Alcover_, Dec 16 2020, after _Alois P. Heinz_ *) %o A327504 (PARI) a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 2)/(6^k*k!)); \\ _Seiichi Manyama_, May 07 2022 %Y A327504 Column k=3 of A324162. %Y A327504 Cf. A346894. %K A327504 nonn %O A327504 0,5 %A A327504 _Alois P. Heinz_, Sep 14 2019