This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327510 #8 May 08 2022 08:24:09 %S A327510 1,0,0,0,0,0,0,0,0,1,45,1155,22275,359502,5135130,67128490,820784250, %T A327510 9528822303,106175420065,1144618783815,12011663703975,123297356170054, %U A327510 1243260840764910,12377559175117290,122870882863640450,1247553197735599755,13803307806688911225 %N A327510 Number of set partitions of [n] where each subset is again partitioned into nine nonempty subsets. %H A327510 Alois P. Heinz, <a href="/A327510/b327510.txt">Table of n, a(n) for n = 0..500</a> %H A327510 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A327510 E.g.f.: exp((exp(x)-1)^9/9!). %F A327510 a(n) = Sum_{k=0..floor(n/9)} (9*k)! * Stirling2(n,9*k)/(9!^k * k!). - _Seiichi Manyama_, May 07 2022 %p A327510 a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j) %p A327510 *binomial(n-1, j-1)*Stirling2(j, 9), j=9..n)) %p A327510 end: %p A327510 seq(a(n), n=0..27); %o A327510 (PARI) a(n) = sum(k=0, n\9, (9*k)!*stirling(n, 9*k, 2)/(9!^k*k!)); \\ _Seiichi Manyama_, May 07 2022 %Y A327510 Column k=9 of A324162. %K A327510 nonn %O A327510 0,11 %A A327510 _Alois P. Heinz_, Sep 14 2019