This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327516 #21 Jan 18 2021 18:05:41 %S A327516 1,1,1,2,3,5,6,9,11,14,17,22,26,32,37,42,50,59,69,80,91,101,115,133, %T A327516 152,170,190,210,235,265,300,334,366,398,441,484,541,597,648,703,770, %U A327516 848,935,1022,1102,1184,1281,1406,1534,1661,1789,1916,2062,2244,2435 %N A327516 Number of integer partitions of n that are empty, (1), or have at least two parts and these parts are pairwise coprime. %C A327516 The Heinz numbers of these partitions are given by A302696. %C A327516 Note that the definition excludes partitions with repeated parts other than 1 (cf. A038348, A304709). %H A327516 Fausto A. C. Cariboni, <a href="/A327516/b327516.txt">Table of n, a(n) for n = 0..750</a> %H A327516 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a> %F A327516 For n > 1, a(n) = A051424(n) - 1. - _Gus Wiseman_, Sep 18 2020 %e A327516 The a(1) = 1 through a(8) = 11 partitions: %e A327516 (1) (11) (21) (31) (32) (51) (43) (53) %e A327516 (111) (211) (41) (321) (52) (71) %e A327516 (1111) (311) (411) (61) (431) %e A327516 (2111) (3111) (511) (521) %e A327516 (11111) (21111) (3211) (611) %e A327516 (111111) (4111) (5111) %e A327516 (31111) (32111) %e A327516 (211111) (41111) %e A327516 (1111111) (311111) %e A327516 (2111111) %e A327516 (11111111) %t A327516 Table[Length[Select[IntegerPartitions[n],#=={}||CoprimeQ@@#&]],{n,0,30}] %Y A327516 Cf. A038348, A302569, A304709, A304711. %Y A327516 A000837 is the relatively prime instead of pairwise coprime version. %Y A327516 A051424 includes all singletons, with strict case A007360. %Y A327516 A101268 is the ordered version (with singletons). %Y A327516 A302696 ranks these partitions, with complement A335241. %Y A327516 A305713 is the strict case. %Y A327516 A307719 counts these partitions of length 3. %Y A327516 A018783 counts partitions with a common divisor. %Y A327516 A328673 counts pairwise non-coprime partitions. %Y A327516 Cf. A087087, A220377, A326675, A333227, A333228, A335238. %K A327516 nonn %O A327516 0,4 %A A327516 _Gus Wiseman_, Sep 19 2019