This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327519 #5 Sep 22 2019 08:05:47 %S A327519 1,1,1,1,2,1,1,1,1,2,1,2,3,1,1,1,2,1,1,1,2,1,2,1,1,4,2,1,1,1,1,5,1,2, %T A327519 1,2,1,1,1,1,1,2,1,2,4,2,3,1,2,1,2,1,1,4,1,1,1,2,1,1,2,4,1,1,1,2,2,7, %U A327519 1,1,4,1,1,2,1,2,1,1,1,1,2,2,1,1,7,2,1 %N A327519 Number of factorizations of A305078(n - 1), the n-th connected number, into connected numbers > 1. %C A327519 A number n with prime factorization n = prime(m_1)^s_1 * ... * prime(m_k)^s_k is connected if the simple labeled graph with vertex set {m_1,...,m_k} and edges between any two vertices with a common divisor greater than 1 is connected. Connected numbers are listed in A305078. %H A327519 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a> %e A327519 The a(190) = 8 factorizations of 585 together with the corresponding multiset partitions of {2,2,3,6}: %e A327519 (3*3*5*13) {{2},{2},{3},{6}} %e A327519 (3*3*65) {{2},{2},{3,6}} %e A327519 (3*5*39) {{2},{3},{2,6}} %e A327519 (3*195) {{2},{2,3,6}} %e A327519 (5*9*13) {{3},{2,2},{6}} %e A327519 (5*117) {{3},{2,2,6}} %e A327519 (9*65) {{2,2},{3,6}} %e A327519 (585) {{2,2,3,6}} %t A327519 nn=100; %t A327519 zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]]; %t A327519 facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; %t A327519 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A327519 y=Select[Range[nn],Length[zsm[primeMS[#]]]==1&]; %t A327519 Table[Length[facsusing[y,n]],{n,y}] %Y A327519 See link for additional cross-references. %Y A327519 Cf. A286518, A302569, A304714, A304716, A305078, A305079, A327076. %K A327519 nonn %O A327519 1,5 %A A327519 _Gus Wiseman_, Sep 21 2019