This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327520 #6 Sep 16 2019 12:39:08 %S A327520 1,1,2,1,1,3,2,1,1,2,5,1,1,1,2,3,1,1,7,2,2,1,1,1,4,1,2,2,1,2,1,1,11,1, %T A327520 2,1,1,4,2,1,5,1,2,1,2,2,2,1,4,1,1,1,1,1,2,2,2,3,1,15,1,7,1,1,2,2,2,1, %U A327520 1,4,2,1,2,1,5,1,2,1,4,2,1,1,2,1,1,1 %N A327520 Number of factorizations of the n-th stable number A316476(n) into stable numbers > 1. %C A327520 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A number is stable if its distinct prime indices are pairwise indivisible. Stable numbers are listed in A316476. %H A327520 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a> %e A327520 The a(26) = 4 factorizations of 45 into stable numbers: %e A327520 (3*3*5) %e A327520 (3*15) %e A327520 (5*9) %e A327520 (45) %e A327520 The a(201) = 11 multiset partitions of the prime indices of 495 into stable multisets: %e A327520 {{2},{2},{3},{5}} %e A327520 {{2},{2},{3,5}} %e A327520 {{2},{3},{2,5}} %e A327520 {{2},{5},{2,3}} %e A327520 {{2},{2,3,5}} %e A327520 {{3},{2,2},{5}} %e A327520 {{3},{2,2,5}} %e A327520 {{2,2},{3,5}} %e A327520 {{5},{2,2,3}} %e A327520 {{2,3},{2,5}} %e A327520 {{2,2,3,5}} %t A327520 nn=100; %t A327520 facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; %t A327520 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A327520 y=Select[Range[nn],stableQ[PrimePi/@First/@FactorInteger[#],Divisible]&]; %t A327520 Table[Length[facsusing[Rest[y],n]],{n,y}] %Y A327520 See link for additional cross-references. %Y A327520 Cf. A001055, A303362, A305149. %K A327520 nonn %O A327520 1,3 %A A327520 _Gus Wiseman_, Sep 15 2019