This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327523 #4 Sep 16 2019 12:39:25 %S A327523 1,1,1,2,1,1,3,2,1,3,1,5,1,3,1,3,1,5,2,3,3,1,1,7,1,5,1,1,3,3,1,9,2,3, %T A327523 3,1,5,5,1,1,3,11,1,3,1,11,1,3,3,1,9,5,1,5,1,3,14,1,3,3,1,1,5,1,11,1, %U A327523 9,1,3,3,2,3,3,1,15,1,5,5,1,1,20,3,3,1,1 %N A327523 Number of factorizations of the n-th number with distinct prime multiplicities A130091(n) into numbers > 1 with distinct prime multiplicities. %C A327523 A number's prime multiplicities are also called its (unsorted) prime signature. %H A327523 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a> %e A327523 The a(57) = 14 factorizations of 96 together with the corresponding multiset partitions of {1,1,1,1,1,2}: %e A327523 (2*2*2*2*2*3) {{1}{1}{1}{1}{1}{2}} %e A327523 (2*2*2*3*4) {{1}{1}{1}{2}{11}} %e A327523 (2*2*2*12) {{1}{1}{1}{112}} %e A327523 (2*2*3*8) {{1}{1}{2}{111}} %e A327523 (2*2*24) {{1}{1}{1112}} %e A327523 (2*3*4*4) {{1}{2}{11}{11}} %e A327523 (2*3*16) {{1}{2}{1111}} %e A327523 (2*4*12) {{1}{11}{112}} %e A327523 (2*48) {{1}{11112}} %e A327523 (3*4*8) {{2}{11}{111}} %e A327523 (3*32) {{2}{11111}} %e A327523 (4*24) {{11}{1112}} %e A327523 (8*12) {{111}{112}} %e A327523 (96) {{111112}} %t A327523 nn=100; %t A327523 facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; %t A327523 y=Select[Range[nn],UnsameQ@@Last/@FactorInteger[#]&]; %t A327523 Table[Length[facsusing[Rest[y],n]],{n,y}] %Y A327523 See link for additional cross-references. %Y A327523 Cf. A098859, A112798, A130091, A255231. %K A327523 nonn %O A327523 1,4 %A A327523 _Gus Wiseman_, Sep 16 2019