This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327524 #6 Sep 18 2019 04:57:08 %S A327524 1,1,1,2,1,2,1,3,2,2,1,1,2,2,5,1,1,2,2,1,2,2,3,1,5,1,7,2,2,2,7,1,2,2, %T A327524 1,5,1,2,1,2,2,1,2,2,2,1,1,2,11,2,5,1,2,5,1,1,2,2,5,1,5,2,1,2,2,2,1,2, %U A327524 2,2,2,1,7,1,5,1,5,2,1,1,5,2,1,5,2,2,2 %N A327524 Number of factorizations of the n-th uniform number A072774(n) into uniform numbers > 1. %C A327524 A number is uniform if its prime multiplicities are all equal, meaning it is a power of a squarefree number. Uniform numbers are listed in A072774. %H A327524 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a> %e A327524 The a(31) = 7 factorizations of 36 into uniform numbers together with the corresponding multiset partitions of {1,1,2,2}: %e A327524 (2*2*3*3) {{1},{1},{2},{2}} %e A327524 (2*2*9) {{1},{1},{2,2}} %e A327524 (2*3*6) {{1},{2},{1,2}} %e A327524 (3*3*4) {{2},{2},{1,1}} %e A327524 (4*9) {{1,1},{2,2}} %e A327524 (6*6) {{1,2},{1,2}} %e A327524 (36) {{1,1,2,2}} %t A327524 nn=100; %t A327524 facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; %t A327524 y=Select[Range[nn],SameQ@@Last/@FactorInteger[#]&]; %t A327524 Table[Length[facsusing[Rest[y],n]],{n,y}]; %Y A327524 See link for additional cross-references. %Y A327524 Cf. A000961, A001055, A005117, A007947, A071625, A112798. %K A327524 nonn %O A327524 1,4 %A A327524 _Gus Wiseman_, Sep 17 2019