This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327525 #8 Sep 20 2019 21:40:29 %S A327525 1,1,1,2,1,2,1,3,2,1,4,1,2,2,5,1,1,4,2,1,7,2,4,1,5,1,7,2,2,2,1,2,7,1, %T A327525 1,4,2,1,12,2,4,1,2,7,2,1,11,1,2,11,5,1,4,2,5,1,1,2,4,2,1,12,2,1,2,2, %U A327525 7,1,4,2,2,2,19,1,1,5,1,7,2,1,1,5,12,1,4 %N A327525 Number of factorizations of A302569(n), the n-th number that is 1, prime, or whose prime indices are pairwise coprime. %C A327525 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %H A327525 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a> %F A327525 a(n) = A001055(A302569(n)). %e A327525 The a(47) = 11 factorizations of 60 together with the corresponding multiset partitions of {1,1,2,3}: %e A327525 (2*2*3*5) {{1},{1},{2},{3}} %e A327525 (2*2*15) {{1},{1},{2,3}} %e A327525 (2*3*10) {{1},{2},{1,3}} %e A327525 (2*5*6) {{1},{3},{1,2}} %e A327525 (2*30) {{1},{1,2,3}} %e A327525 (3*4*5) {{2},{1,1},{3}} %e A327525 (3*20) {{2},{1,1,3}} %e A327525 (4*15) {{1,1},{2,3}} %e A327525 (5*12) {{3},{1,1,2}} %e A327525 (6*10) {{1,2},{1,3}} %e A327525 (60) {{1,1,2,3}} %t A327525 nn=100; %t A327525 facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; %t A327525 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A327525 y=Select[Range[nn],PrimeQ[#]||CoprimeQ@@primeMS[#]&]; %t A327525 Table[Length[facsusing[Rest[y],n]],{n,y}] %Y A327525 See link for additional cross-references. %Y A327525 Cf. A056239, A112798, A281116, A318721, A302569, A304711, A305079. %K A327525 nonn %O A327525 1,4 %A A327525 _Gus Wiseman_, Sep 20 2019