This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327540 #6 Sep 18 2019 07:49:11 %S A327540 1,1,1,2,1,2,1,3,2,1,4,1,2,2,5,1,3,1,4,2,1,7,2,4,1,5,1,7,2,2,2,7,1,2, %T A327540 7,1,4,1,4,3,2,1,12,3,2,4,1,4,2,7,2,1,11,1,2,11,5,1,4,2,5,1,13,1,2,3, %U A327540 4,2,4,1,12,2,1,9,2,2,7,1,9,4,2,2,2,19,1 %N A327540 Number of factorizations of A327534(n), the n-th number that is 1, prime, or whose prime indices are relatively prime, into numbers > 1 satisfying the same conditions. %C A327540 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Numbers that are 1, prime, or whose prime indices are relatively prime are A327534. The number of divisors of n satisfying the same conditions is A327536(n). %H A327540 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a> %e A327540 The a(74) = 9 factorizations of 84 together with the corresponding multiset partitions of {1,1,2,4}: %e A327540 (2*2*3*7) {{1},{1},{2},{4}} %e A327540 (2*3*14) {{1},{2},{1,4}} %e A327540 (2*6*7) {{1},{1,2},{4}} %e A327540 (2*42) {{1},{1,2,4}} %e A327540 (3*4*7) {{2},{1,1},{4}} %e A327540 (3*28) {{2},{1,1,4}} %e A327540 (6*14) {{1,2},{1,4}} %e A327540 (7*12) {{4},{1,1,2}} %e A327540 (84) {{1,1,2,4}} %t A327540 nn=100; %t A327540 facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]]; %t A327540 y=Select[Range[nn],#==1||PrimeQ[#]||GCD@@PrimePi/@First/@FactorInteger[#]==1&]; %t A327540 Table[Length[facsusing[Rest[y],n]],{n,y}] %Y A327540 See link for additional cross-references. %Y A327540 Cf. A006530, A056239, A112798, A281116, A289509, A327407. %K A327540 nonn %O A327540 1,4 %A A327540 _Gus Wiseman_, Sep 17 2019