This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327543 #34 Oct 23 2019 15:56:10 %S A327543 1,2,4,7,13,24,32,63,78,125,182,255,378,566,704,794,963,1112,1486, %T A327543 1544,1934,2566,3295,3471,3969,6397,6619,8373,8570,9178,10172,10941, %U A327543 11566,12346,13297,13880,15322,25462,28118,36718,64414,70855,83453,100051,103714,146918,185012,220570 %N A327543 Indices n of Gram points g(n) for successive positive maxima of the Riemann zeta function on critical line. %C A327543 Gram points occur when the imaginary part of Riemann zeta function is zero but the real part nonzero. %C A327543 The n-th Gram point occurs when the Riemann-Siegel theta function is equal to Pi*n. %C A327543 For indices of Gram points g(n) for successive positive minima of the Riemann zeta function on critical line see A326890. %C A327543 For indices of Gram points g(n) for successive negative minima of the Riemann zeta function on critical line see A326891. %C A327543 For indices of Gram points g(n) for successive negative maxima of the Riemann zeta function on critical line see A325932. %e A327543 n | a(n) | Zeta(1/2 + I*g(a(n))) | g(a(n)) %e A327543 ---+------+-----------------------+------------ %e A327543 1 | 1 | 1.45742704787401225 | 23.17028270 %e A327543 2 | 2 | 2.84509123805192195 | 27.67018222 %e A327543 3 | 4 | 2.93812153849374056 | 35.46718430 %e A327543 4 | 7 | 3.66290294911991710 | 45.59302898 %e A327543 5 | 13 | 4.16439875850106581 | 63.10186798 %e A327543 6 | 24 | 4.47536695704548069 | 90.75295338 %e A327543 7 | 32 | 5.18702282127077889 | 108.9364311 %e A327543 8 | 63 | 5.97089319007464658 | 171.8101081 %e A327543 9 | 78 | 6.06256772354879599 | 199.6489681 %e A327543 10 | 125 | 7.00315163729736922 | 280.8024294 %e A327543 11 | 182 | 7.56958843983997014 | 371.5556258 %e A327543 12 | 255 | 8.24960849238073236 | 480.4061559 %e A327543 13 | 378 | 9.14820901096157903 | 652.2447407 %e A327543 14 | 566 | 9.37745383604127446 | 897.7841913 %e A327543 15 | 704 | 9.81879930244819679 | 1069.412795 %e A327543 16 | 794 | 10.35506137680061993 | 1178.447136 %t A327543 ff = 0; aa = {}; Do[kk = Re[Zeta[1/2 + I N[InverseFunction[RiemannSiegelTheta][n Pi], 10]]]; If[kk > ff, AppendTo[aa, n]; ff = kk], {n, 1, 250000}]; aa %Y A327543 Cf. A114856, A254297, A255739, A255742, A325932, A326502, A326890, A326891. %K A327543 nonn %O A327543 1,2 %A A327543 _Artur Jasinski_, Sep 16 2019