This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327545 #35 Sep 18 2019 10:32:59 %S A327545 1,4,0,5,2,2,10,14,8,0,7,14,20,2,2,26,39,84,60,27,0,11,47,108,95,63,3, %T A327545 3,20,101,233,369,289,79,17,0,19,86,306,475,714,409,146,1,1,32,201, %U A327545 979,2048,3581,3474,1925,449,51,0,17,114,507,1273,2224,2239,1074,230,35,0,0 %N A327545 Triangle T(n,k) read by rows giving the number of zeroless polydivisible numbers in base n that have k distinct digits with 1 <= k <= n-1. %C A327545 For k >= n there is no k-digit zeroless polydivisible number in base n. %H A327545 Seiichi Manyama, <a href="/A327545/b327545.txt">Rows n = 2..18, flattened</a> %H A327545 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polydivisible_number">Polydivisible number</a>. %e A327545 n | zeroless polydivisible numbers in base n %e A327545 --+------------------------------------------ %e A327545 2 | [1] %e A327545 3 | [1, 2, 11, 22] %e A327545 4 | [1, 2, 3, 22, 222], [12, 32], [123, 321] %e A327545 So T(2,1) = 1, T(3,1) = 4, T(3,2) = 0, T(4,1) = 5, T(4,2) = 2, T(4,3) = 2. %e A327545 Triangle begins: %e A327545 n\k | 1 2 3 4 5 6 7 8 9 %e A327545 -----+---------------------------------------- %e A327545 2 | 1; %e A327545 3 | 4, 0; %e A327545 4 | 5, 2, 2; %e A327545 5 | 10, 14, 8, 0; %e A327545 6 | 7, 14, 20, 2, 2; %e A327545 7 | 26, 39, 84, 60, 27, 0; %e A327545 8 | 11, 47, 108, 95, 63, 3, 3; %e A327545 9 | 20, 101, 233, 369, 289, 79, 17, 0; %e A327545 10 | 19, 86, 306, 475, 714, 409, 146, 1, 1; %o A327545 (Ruby) %o A327545 def A(n) %o A327545 d = 0 %o A327545 a = (1..n - 1).map{|i| [i]} %o A327545 ary = [n - 1] + Array.new(n - 2, 0) %o A327545 while d < n - 2 %o A327545 d += 1 %o A327545 b = [] %o A327545 a.each{|i| %o A327545 (1..n - 1).each{|j| %o A327545 m = i.clone + [j] %o A327545 if (0..d).inject(0){|s, k| s + m[k] * n ** (d - k)} % (d + 1) == 0 %o A327545 b << m %o A327545 ary[m.uniq.size - 1] += 1 %o A327545 end %o A327545 } %o A327545 } %o A327545 a = b %o A327545 end %o A327545 ary %o A327545 end %o A327545 def A327545(n) %o A327545 (2..n).map{|i| A(i)}.flatten %o A327545 end %o A327545 p A327545(10) %Y A327545 Row sums give A324020. %Y A327545 T(2*n,2*n-1) gives A181736. %Y A327545 T(n,1) gives A327577. %Y A327545 Cf. A324019, A324205. %K A327545 nonn,base,tabl %O A327545 2,2 %A A327545 _Seiichi Manyama_, Sep 16 2019