cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327545 Triangle T(n,k) read by rows giving the number of zeroless polydivisible numbers in base n that have k distinct digits with 1 <= k <= n-1.

This page as a plain text file.
%I A327545 #35 Sep 18 2019 10:32:59
%S A327545 1,4,0,5,2,2,10,14,8,0,7,14,20,2,2,26,39,84,60,27,0,11,47,108,95,63,3,
%T A327545 3,20,101,233,369,289,79,17,0,19,86,306,475,714,409,146,1,1,32,201,
%U A327545 979,2048,3581,3474,1925,449,51,0,17,114,507,1273,2224,2239,1074,230,35,0,0
%N A327545 Triangle T(n,k) read by rows giving the number of zeroless polydivisible numbers in base n that have k distinct digits with 1 <= k <= n-1.
%C A327545 For k >= n there is no k-digit zeroless polydivisible number in base n.
%H A327545 Seiichi Manyama, <a href="/A327545/b327545.txt">Rows n = 2..18, flattened</a>
%H A327545 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polydivisible_number">Polydivisible number</a>.
%e A327545 n | zeroless polydivisible numbers in base n
%e A327545 --+------------------------------------------
%e A327545 2 | [1]
%e A327545 3 | [1, 2, 11, 22]
%e A327545 4 | [1, 2, 3, 22, 222],  [12, 32], [123, 321]
%e A327545 So T(2,1) = 1, T(3,1) = 4, T(3,2) = 0, T(4,1) = 5, T(4,2) = 2, T(4,3) = 2.
%e A327545 Triangle begins:
%e A327545 n\k  |  1    2    3    4    5    6    7  8  9
%e A327545 -----+----------------------------------------
%e A327545    2 |  1;
%e A327545    3 |  4,   0;
%e A327545    4 |  5,   2,   2;
%e A327545    5 | 10,  14,   8,   0;
%e A327545    6 |  7,  14,  20,   2,   2;
%e A327545    7 | 26,  39,  84,  60,  27,   0;
%e A327545    8 | 11,  47, 108,  95,  63,   3,   3;
%e A327545    9 | 20, 101, 233, 369, 289,  79,  17, 0;
%e A327545   10 | 19,  86, 306, 475, 714, 409, 146, 1, 1;
%o A327545 (Ruby)
%o A327545 def A(n)
%o A327545   d = 0
%o A327545   a = (1..n - 1).map{|i| [i]}
%o A327545   ary = [n - 1] + Array.new(n - 2, 0)
%o A327545   while d < n - 2
%o A327545     d += 1
%o A327545     b = []
%o A327545     a.each{|i|
%o A327545       (1..n - 1).each{|j|
%o A327545         m = i.clone + [j]
%o A327545         if (0..d).inject(0){|s, k| s + m[k] * n ** (d - k)} % (d + 1) == 0
%o A327545           b << m
%o A327545           ary[m.uniq.size - 1] += 1
%o A327545         end
%o A327545       }
%o A327545     }
%o A327545     a = b
%o A327545   end
%o A327545   ary
%o A327545 end
%o A327545 def A327545(n)
%o A327545   (2..n).map{|i| A(i)}.flatten
%o A327545 end
%o A327545 p A327545(10)
%Y A327545 Row sums give A324020.
%Y A327545 T(2*n,2*n-1) gives A181736.
%Y A327545 T(n,1) gives A327577.
%Y A327545 Cf. A324019, A324205.
%K A327545 nonn,base,tabl
%O A327545 2,2
%A A327545 _Seiichi Manyama_, Sep 16 2019