This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327547 #20 Jan 03 2021 16:55:56 %S A327547 1,0,1,0,3,1,0,26,9,1,0,426,131,18,1,0,11064,2910,395,30,1,0,413640, %T A327547 92314,11475,925,45,1,0,20946960,3980172,438424,34125,1855,63,1,0, %U A327547 1377648720,224782284,21632436,1550689,84840,3346,84,1,0,114078384000,16158371184,1353378284,87036012,4533249,185976,5586,108,1 %N A327547 Triangular array read by rows: T(n,k) is the number of ordered pairs of n-permutations that generate a group with exactly k orbits, 0 <= k <= n, n >= 0. %H A327547 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; page 139. %F A327547 E.g.f.: exp(y*log(Sum_{n>=0} n! * x^n)). %e A327547 Triangle T(n,k) begins: %e A327547 1; %e A327547 0, 1; %e A327547 0, 3, 1; %e A327547 0, 26, 9, 1; %e A327547 0, 426, 131, 18, 1; %e A327547 0, 11064, 2910, 395, 30, 1; %e A327547 0, 413640, 92314, 11475, 925, 45, 1; %e A327547 T(3,2) = 9 because we have 3 ordered pairs (e,<(1,2)>), (<(1,2)>,e), (<(1,2)>,<(1,2)>) for each of the 3 transpositions in S_3. %t A327547 nn = 7; Range[0, nn]! CoefficientList[Series[Exp[u Log[Sum[n!^2 z^n/n!, {n, 0, nn}]]], {z, 0, nn}], {z, u}] // Grid %Y A327547 Cf. A122949 (column 1), A001044 (row sums), A220754. %K A327547 nonn,tabl %O A327547 0,5 %A A327547 _Geoffrey Critzer_, Sep 16 2019