cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327548 Total number of compositions in the compositions of partitions of n.

This page as a plain text file.
%I A327548 #14 Dec 17 2020 14:49:44
%S A327548 0,1,4,11,34,85,248,603,1630,4017,10308,24855,63210,150141,369936,
%T A327548 882083,2135606,5023689,12064092,28167919,66828418,155569685,
%U A327548 364983208,844175675,1971322574,4533662817,10498550260,24077361031,55432615194,126492183213,289997946944
%N A327548 Total number of compositions in the compositions of partitions of n.
%H A327548 Alois P. Heinz, <a href="/A327548/b327548.txt">Table of n, a(n) for n = 0..3202</a>
%F A327548 a(n) = Sum_{k=1..n} k * A327549(n,k).
%F A327548 a(n) ~ log(2) * (3/(Pi^2 - 6*log(2)^2))^(1/4) * 2^(n-1) * exp(sqrt((Pi^2 - 6*log(2)^2)*n/3)) / (sqrt(Pi) * n^(1/4)). - _Vaclav Kotesovec_, Sep 19 2019
%e A327548 a(3) = 11 = 1+1+1+1+2+2+3 counts the compositions in 3, 21, 12, 111, 2|1, 11|1, 1|1|1.
%p A327548 b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
%p A327548       b(n, i-1)+(p->p+[0, p[1]])(2^(i-1)*b(n-i, min(n-i, i)))))
%p A327548     end:
%p A327548 a:= n-> b(n$2)[2]:
%p A327548 seq(a(n), n=0..32);
%t A327548 b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, b[n, i - 1] + With[{p = 2^(i - 1) b[n - i, Min[n - i, i]]}, p + {0, p[[1]]}]]];
%t A327548 a[n_] := b[n, n][[2]];
%t A327548 a /@ Range[0, 32] (* _Jean-François Alcover_, Dec 17 2020, after _Alois P. Heinz_ *)
%Y A327548 Cf. A000041, A011782, A075900, A326346, A327549.
%K A327548 nonn
%O A327548 0,3
%A A327548 _Alois P. Heinz_, Sep 16 2019