This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327552 #15 Dec 17 2020 11:56:16 %S A327552 0,1,2,7,11,29,63,125,225,489,930,1704,3260,5859,10868,20026,35062, %T A327552 61660,111789,191119,337432,585847,1003876,1705380,2921394,4930357, %U A327552 8311554,14013583,23435178,38849655,64847870,106784912,175699558,289676875,472418418,772944773 %N A327552 Number of partitions in all twice partitions of n where the first partition is strict. %H A327552 Alois P. Heinz, <a href="/A327552/b327552.txt">Table of n, a(n) for n = 0..3200</a> %e A327552 a(3) = 7 = 1+1+1+2+2 counting the partitions in 3, 21, 111, 2|1, 11|1. %p A327552 b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0, %p A327552 `if`(n=0, [1, 0], b(n, i-1)+(p->p+[0, p[1]])( %p A327552 combinat[numbpart](i)*b(n-i, min(n-i, i-1))))) %p A327552 end: %p A327552 a:= n-> b(n$2)[2]: %p A327552 seq(a(n), n=0..36); %t A327552 b[n_, i_] := b[n, i] = If[i(i+1)/2<n, {0, 0}, If[n==0, {1, 0}, b[n, i-1] + Function[p, p + {0, p[[1]]}][PartitionsP[i] b[n-i, Min[n-i, i-1]]]]]; %t A327552 a[n_] := b[n, n][[2]]; %t A327552 a /@ Range[0, 36] (* _Jean-François Alcover_, Dec 17 2020, after _Alois P. Heinz_ *) %Y A327552 Cf. A000009, A000041, A271619, A327607. %K A327552 nonn %O A327552 0,3 %A A327552 _Alois P. Heinz_, Sep 16 2019