A327570 a(n) = n*phi(n)^2, phi = A000010.
1, 2, 12, 16, 80, 24, 252, 128, 324, 160, 1100, 192, 1872, 504, 960, 1024, 4352, 648, 6156, 1280, 3024, 2200, 11132, 1536, 10000, 3744, 8748, 4032, 22736, 1920, 27900, 8192, 13200, 8704, 20160, 5184, 47952, 12312, 22464, 10240, 65600, 6048, 75852, 17600, 25920, 22264, 99452, 12288
Offset: 1
Examples
G_3 = {{{1, 0}, {0, 1}}, {{1, 1}, {0, 1}}, {{1, 2}, {0, 1}}, {{1, 0}, {0, 2}}, {{1, 1}, {0, 2}}, {{1, 2}, {0, 2}}, {{2, 0}, {0, 1}}, {{2, 1}, {0, 1}}, {{2, 2}, {0, 1}}, {{2, 0}, {0, 2}}, {{2, 1}, {0, 2}}, {{2, 2}, {0, 2}}} with order 12, so a(3) = 12.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[n * EulerPhi[n]^2, {n, 1, 100}] (* Amiram Eldar, Sep 19 2020 *)
-
PARI
a(n) = n*eulerphi(n)^2
Formula
Multiplicative with a(p^e) = (p-1)^2*p^(3e-2).
a(p) = A011379(p-1) for p prime. - Peter Luschny, Sep 17 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^2/((p-1)^3 * (p^2 + p + 1))) = 1.7394747912949637836019917301710010334604379331855033150372654868327481539... - Vaclav Kotesovec, Sep 20 2020
Sum_{k=1..n} a(k) ~ c * n^4, where c = (1/4) * Product_{p prime} (1 - (2*p-1)/p^3) = A065464 / 4 = 0.1070623764... . - Amiram Eldar, Nov 05 2022
Comments