cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327571 Triangle T(n,k) read by rows giving the number of zeroless polydivisible numbers in base n that contains only "k" in the digits with 1 <= k <= n-1.

This page as a plain text file.
%I A327571 #48 Sep 18 2019 13:43:27
%S A327571 1,2,2,1,3,1,2,2,4,2,1,2,1,2,1,4,4,4,4,6,4,1,2,1,2,1,3,1,2,2,4,2,2,4,
%T A327571 2,2,1,3,1,4,1,3,1,4,1,2,2,6,2,2,6,2,2,6,2,1,2,1,2,1,3,1,2,1,2,1,4,4,
%U A327571 4,4,6,4,4,4,4,6,4,4
%N A327571 Triangle T(n,k) read by rows giving the number of zeroless polydivisible numbers in base n that contains only "k" in the digits with 1 <= k <= n-1.
%H A327571 Seiichi Manyama, <a href="/A327571/b327571.txt">Rows n = 2..141, flattened</a>
%H A327571 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polydivisible_number">Polydivisible number</a>.
%F A327571 T(n,1) = T(n,n-1) = A071222(n-2).
%F A327571 T(n,1) <= T(n,k).
%F A327571 T(n,2*m) >= 2 for m >= 1.
%e A327571 n | zeroless polydivisible numbers with all digits the same in base n
%e A327571 --+------------------------------------------------------------------
%e A327571 2 | [1]
%e A327571 3 | [1, 11], [2, 22]
%e A327571 4 | [1], [2, 22, 222], [3]
%e A327571 So T(2,1) = 1, T(3,1) = 2, T(3,2) = 2, T(4,1) = 1, T(4,2) = 3, T(4,3) = 1.
%e A327571 Triangle begins:
%e A327571 n\k  | 1  2  3  4  5  6  7  8  9 10 11 12
%e A327571 -----+------------------------------------
%e A327571    2 | 1;
%e A327571    3 | 2, 2;
%e A327571    4 | 1, 3, 1;
%e A327571    5 | 2, 2, 4, 2;
%e A327571    6 | 1, 2, 1, 2, 1;
%e A327571    7 | 4, 4, 4, 4, 6, 4;
%e A327571    8 | 1, 2, 1, 2, 1, 3, 1;
%e A327571    9 | 2, 2, 4, 2, 2, 4, 2, 2;
%e A327571   10 | 1, 3, 1, 4, 1, 3, 1, 4, 1;
%e A327571   11 | 2, 2, 6, 2, 2, 6, 2, 2, 6, 2;
%e A327571   12 | 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1;
%e A327571   13 | 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4;
%o A327571 (Ruby)
%o A327571 def T(k, n)
%o A327571   s = 0
%o A327571   (0..n - 2).each{|i|
%o A327571     s += k * n ** i
%o A327571     return i if s % (i + 1) > 0
%o A327571   }
%o A327571   n - 1
%o A327571 end
%o A327571 def A327571(n)
%o A327571   (2..n).map{|i| (1..i - 1).map{|j| T(j, i)}}.flatten
%o A327571 end
%o A327571 p A327571(10)
%Y A327571 Row sums give A327577.
%Y A327571 Cf. A071222, A327545.
%K A327571 nonn,tabl,base
%O A327571 2,2
%A A327571 _Seiichi Manyama_, Sep 17 2019