This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A327571 #48 Sep 18 2019 13:43:27 %S A327571 1,2,2,1,3,1,2,2,4,2,1,2,1,2,1,4,4,4,4,6,4,1,2,1,2,1,3,1,2,2,4,2,2,4, %T A327571 2,2,1,3,1,4,1,3,1,4,1,2,2,6,2,2,6,2,2,6,2,1,2,1,2,1,3,1,2,1,2,1,4,4, %U A327571 4,4,6,4,4,4,4,6,4,4 %N A327571 Triangle T(n,k) read by rows giving the number of zeroless polydivisible numbers in base n that contains only "k" in the digits with 1 <= k <= n-1. %H A327571 Seiichi Manyama, <a href="/A327571/b327571.txt">Rows n = 2..141, flattened</a> %H A327571 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polydivisible_number">Polydivisible number</a>. %F A327571 T(n,1) = T(n,n-1) = A071222(n-2). %F A327571 T(n,1) <= T(n,k). %F A327571 T(n,2*m) >= 2 for m >= 1. %e A327571 n | zeroless polydivisible numbers with all digits the same in base n %e A327571 --+------------------------------------------------------------------ %e A327571 2 | [1] %e A327571 3 | [1, 11], [2, 22] %e A327571 4 | [1], [2, 22, 222], [3] %e A327571 So T(2,1) = 1, T(3,1) = 2, T(3,2) = 2, T(4,1) = 1, T(4,2) = 3, T(4,3) = 1. %e A327571 Triangle begins: %e A327571 n\k | 1 2 3 4 5 6 7 8 9 10 11 12 %e A327571 -----+------------------------------------ %e A327571 2 | 1; %e A327571 3 | 2, 2; %e A327571 4 | 1, 3, 1; %e A327571 5 | 2, 2, 4, 2; %e A327571 6 | 1, 2, 1, 2, 1; %e A327571 7 | 4, 4, 4, 4, 6, 4; %e A327571 8 | 1, 2, 1, 2, 1, 3, 1; %e A327571 9 | 2, 2, 4, 2, 2, 4, 2, 2; %e A327571 10 | 1, 3, 1, 4, 1, 3, 1, 4, 1; %e A327571 11 | 2, 2, 6, 2, 2, 6, 2, 2, 6, 2; %e A327571 12 | 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1; %e A327571 13 | 4, 4, 4, 4, 6, 4, 4, 4, 4, 6, 4, 4; %o A327571 (Ruby) %o A327571 def T(k, n) %o A327571 s = 0 %o A327571 (0..n - 2).each{|i| %o A327571 s += k * n ** i %o A327571 return i if s % (i + 1) > 0 %o A327571 } %o A327571 n - 1 %o A327571 end %o A327571 def A327571(n) %o A327571 (2..n).map{|i| (1..i - 1).map{|j| T(j, i)}}.flatten %o A327571 end %o A327571 p A327571(10) %Y A327571 Row sums give A327577. %Y A327571 Cf. A071222, A327545. %K A327571 nonn,tabl,base %O A327571 2,2 %A A327571 _Seiichi Manyama_, Sep 17 2019